zoukankan      html  css  js  c++  java
  • [LeetCode] Minimum Window Substring

    Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n).

    For example,
    S = "ADOBECODEBANC"
    T = "ABC"

    Minimum window is "BANC".

    Note:
    If there is no such window in S that covers all characters in T, return the emtpy string "".

    If there are multiple such windows, you are guaranteed that there will always be only one unique minimum window in S.

    Hide Tags
     Hash Table Two Pointers String
     

    思路:

    双指针,动态维护一个区间。尾指针不断往后扫,当扫到有一个窗口包含了所有 T 的字符后,
    然后再收缩头指针,直到不能再收缩为止。最后记录所有可能的情况中窗口最小的

    时间复杂度 O(n),空间复杂度 O(1)

    class Solution {
        public:
            string minWindow(string S, string T)
            {
                if(S.empty() || T.empty() || S.size() < T.size())
                    return string();
    
                vector<int> expect(256, 0);
                vector<int> appear(256, 0);
    
                for(int i = 0; i < T.size(); i++)
                {   
                    expect[T[i]] ++; 
                }   
    
                int minWidth = INT_MAX, min_start = 0; //
                int win_start = 0;
                int appearCharCnt = 0;
                for(int win_end = 0; win_end < S.size(); win_end++)
                {   
                    if(expect[S[win_end]] > 0) // this char is part of T
                    {   
                        appear[S[win_end]]++;
                        if(appear[S[win_end]] <= expect[S[win_end]])
                            appearCharCnt ++; 
                    }   
                    //cout << "appearCharCnt	" <<appearCharCnt<< endl;
                    if(appearCharCnt == T.size())
                    {   
                        // shrink the start
                        while (appear[S[win_start]] > expect[S[win_start]]
                                || expect[S[win_start]] == 0) {
                            appear[S[win_start]]--;
                            win_start++;
                        }
                        if ((win_end - win_start + 1) < minWidth) {
                            minWidth = win_end - win_start + 1;
                            min_start = win_start;
                            //cout << "min_start	" <<min_start << endl;
                            //cout << "min_width	" <<minWidth<< endl;
                        }
                    }
                }
    
                if (minWidth == INT_MAX)
                    return "";
                else
                    return S.substr(min_start, minWidth);
    
    
            }
    };

    精简一下条件判断

    class Solution {
        public:
            string minWindow(string S, string T)
            {
                if(S.empty() || T.empty() || S.size() < T.size())
                    return string();
    
                vector<int> expect(256, 0);
                vector<int> appear(256, 0);
    
                for(int i = 0; i < T.size(); i++)
                {
                    expect[T[i]] ++;
                }
    
                int minWidth = INT_MAX, min_start = 0; 
                int win_start = 0;
                int appearCharCnt = 0;
                for(int win_end = 0; win_end < S.size(); win_end++)
                {   
                    appear[S[win_end]]++;
                    if(appear[S[win_end]] <= expect[S[win_end]])
                        appearCharCnt ++; 
                    //cout << "appearCharCnt	" <<appearCharCnt<< endl;
                    if(appearCharCnt == T.size())
                    {   
                        // shrink the win start
                        while (appear[S[win_start]] > expect[S[win_start]]
                              ) { 
                            appear[S[win_start]]--;
                            win_start++;
                        }   
                        if ((win_end - win_start + 1) < minWidth) {
                            minWidth = win_end - win_start + 1;
                            min_start = win_start;
                            //cout << "min_start	" <<min_start << endl;
                            //cout << "min_width	" <<minWidth<< endl;
                        }
                    }
                }
    
                if (minWidth == INT_MAX)
                    return "";
                else
                    return S.substr(min_start, minWidth);
    
    
            }
    };
  • 相关阅读:
    分苹果
    马拉车算法(求最长回文子串)
    KMP
    字典树
    关于子类和父类中的this的用法
    最长上生子序列LIS
    sass
    黑马程序员----java基础笔记下(毕向东)
    DOM
    ajax教程
  • 原文地址:https://www.cnblogs.com/diegodu/p/4329944.html
Copyright © 2011-2022 走看看