Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 / / / 3 2 1 1 3 2 / / 2 1 2 3Tree Dynamic Programming
思路:dp
如果集合为空,只有一种BST,即空树,
UniqueTrees[0] =1
如果集合仅有一个元素,只有一种BST,即为单个节点UniqueTrees[1] = 1
UniqueTrees[2] = UniqueTrees[0] * UniqueTrees[1] (1为根的情况)+ UniqueTrees[1] * UniqueTrees[0] (2为根的情况)。
再看一遍三个元素的数组,可以发现BST的取值方式如下:
UniqueTrees[3] = UniqueTrees[0]*UniqueTrees[2] (1为根的情况)
+ UniqueTrees[1]*UniqueTrees[1] (2为根的情况)
+ UniqueTrees[2]*UniqueTrees[0] (3为根的情况)
所以,由此观察,可以得出UniqueTrees的递推公式为UniqueTrees[i] = ∑ UniqueTrees[0...k] * [i-1-k] k取值范围 0<= k <=(i-1)
class Solution { public: int numTrees(int n) { int *num = new int[n+1]; num[0] = 1; num[1] = 1; int tmp = 0; for(int i =2; i <=n; i++) { tmp = 0; for(int j= 0; j <i ;j++) tmp += num[j]*num[i-j-1]; num[i] = tmp; } tmp = num[n]; delete []num; return tmp; } };