zoukankan      html  css  js  c++  java
  • LightOJ 1030

    题目链接:https://cn.vjudge.net/problem/LightOJ-1030

    You are in a cave, a long cave! The cave can be represented by a 1 x N grid. Each cell of the cave can contain any amount of gold.

    Initially you are in position 1. Now each turn you throw a perfect 6 sided dice. If you get X in the dice after throwing, you add X to your position and collect all the gold from the new position. If your new position is outside the cave, then you keep throwing again until you get a suitable result. When you reach the Nth position you stop your journey. Now you are given the information about the cave, you have to find out the expected number of gold you can collect using the given procedure.

    Input

    Input starts with an integer T (≤ 100), denoting the number of test cases.

    Each case contains a blank line and an integer N (1 ≤ N ≤ 100) denoting the dimension of the cave. The next line contains N space separated integers. The ith integer of this line denotes the amount of gold you will get if you come to the ith cell. You may safely assume that all the given integers will be non-negative and no integer will be greater than 1000

    Output

    For each case, print the case number and the expected number of gold you will collect. Errors less than 10-6 will be ignored. 

    Sample Input

    3

    1

    101

    2

    10 3

    3

    3 6 9

    Sample Output

    Case 1: 101.0000000000

    Case 2: 13.000

    Case 3: 15

    题意:

    给出n个格子,编号为1~n,每个格子里有价值Gi的宝藏;

    现在,扔一个六面的标准的骰子,按得到的点数走格子,起点为1;

    如果在某个格子,扔出骰子之后,得到的点数会让你走到编号大于n的格子,就不算数,重新扔,直到扔到一个你能走点数为止;

    如果你走到了编号n的格子,就停止;

    求得到宝藏价值的期望值。

    题解:

    每个格子的价值为Gi,我们只要求出每个格子可能被走到的概率Pi,那么我们求出Σ( Gi * Pi )即为答案;

    显然是个概率DP题,动态转移求出走到每个格子的概率即可;

    AC代码:

     1 #include<cstdio>
     2 #include<cstring>
     3 #define MAXN 105
     4 #define min(a,b) (a<b)?a:b
     5 int n,grid[MAXN];
     6 double dp[MAXN];
     7 int main()
     8 {
     9     int t;
    10     scanf("%d",&t);
    11     for(int kase=1;kase<=t;kase++)
    12     {
    13         scanf("%d",&n);
    14         for(int i=1;i<=n;i++) scanf("%d",grid+i);
    15 
    16         memset(dp,0,sizeof(dp));
    17         dp[1]=1;
    18         for(int i=1;i<=n;i++)
    19         {
    20             int k=min(6,n-i);
    21             for(int j=1;j<=k;j++) dp[i+j]+=dp[i]*(1.0/k);
    22         }
    23 
    24         double ans=0;
    25         for(int i=1;i<=n;i++) ans+=dp[i]*grid[i];
    26         printf("Case %d: %.7lf
    ",kase,ans);
    27     }
    28 }

    PS. becky大佬有期望DP的做法:http://blog.csdn.net/becky_w/article/details/78247858

  • 相关阅读:
    Spring @Async开启异步任务
    Spring中@Async用法总结
    分布式任务调度平台XXL-JOB
    异常的概念和Java异常体系结构
    Java中主线程如何捕获子线程抛出的异常
    java主线程捕获子线程中的异常
    springboot线程池@Async的使用和扩展
    全面理解Java内存模型(JMM)及volatile关键字
    C++异常处理入门
    VC6下深入理解new[]和delete[](在多线程下new和delete的时候,必须选择上多线程库,不然可能造成进程崩溃)
  • 原文地址:https://www.cnblogs.com/dilthey/p/7684262.html
Copyright © 2011-2022 走看看