zoukankan      html  css  js  c++  java
  • UVA 11168

    题目链接:https://cn.vjudge.net/problem/UVA-11168 

    题意:

    给出平面上的n个点,求一条直线,使得所有的点在该直线的同一侧(可以在该直线上),并且所有点到该直线的距离和最小,输出该距离除以n;

    题解:

    显然最好能让越多的点在这条直线上就越好,但又要所有点满足在同侧,则显然要选取某条凸包边界所在直线作为ans;

    求出凸包后,遍历每条凸包边,求出所有点到这条直线的距离和,找到最小的即可。

    AC代码:

    #include<bits/stdc++.h>
    #define MAX 10005
    using namespace std;
    
    //--------------------------------------计算几何模板 - st--------------------------------------
    
    const double eps = 1e-6;
    
    struct Point{
        double x,y;
        Point(double tx=0,double ty=0):x(tx),y(ty){}
    };
    typedef Point Vctor;
    
    //向量的加减乘除
    Vctor operator + (Vctor A,Vctor B){return Vctor(A.x+B.x,A.y+B.y);}
    Vctor operator - (Point A,Point B){return Vctor(A.x-B.x,A.y-B.y);}
    Vctor operator * (Vctor A,double p){return Vctor(A.x*p,A.y*p);}
    Vctor operator / (Vctor A,double p){return Vctor(A.x/p,A.y/p);}
    bool operator < (Point A,Point B){return A.x < B.x || (A.x == B.x && A.y < B.y);}
    
    struct Line{
        Point p;
        Vctor v;
        Line(Point p=Point(0,0),Vctor v=Vctor(0,0)):p(p),v(v){}
        Point point(double t){return p + v*t;} //获得直线上的距离p点t个单位长度的点
    };
    struct Circle{
        Point c;
        double r;
        Circle(Point tc=Point(0,0),double tr=0):c(tc),r(tr){}
        Point point(double a){return Point( c.x + cos(a)*r , c.y + sin(a)*r);}
    };
    
    int dcmp(double x)
    {
        if(fabs(x)<eps) return 0;
        else return (x<0)?(-1):(1);
    }
    bool operator == (Point A,Point B){return dcmp(A.x-B.x)==0 && dcmp(A.y-B.y)==0;}
    
    //向量的点积,长度,夹角
    double Dot(Vctor A,Vctor B){return A.x*B.x+A.y*B.y;}
    double Length(Vctor A){return sqrt(Dot(A,A));}
    double Angle(Vctor A,Vctor B){return acos(Dot(A,B)/Length(A)/Length(B));}
    
    //叉积,三角形面积
    double Cross(Vctor A,Vctor B){return A.x*B.y-A.y*B.x;}
    double TriangleArea(Point A,Point B,Point C){return Cross(B-A,C-A);}
    
    //向量的旋转,求向量的单位法线(即左转90度,然后长度归一)
    Vctor Rotate(Vctor A,double rad){return Vctor( A.x*cos(rad) - A.y*sin(rad) , A.x*sin(rad) + A.y*cos(rad) );}
    Vctor Normal(Vctor A)
    {
        double L = Length(A);
        return Vctor(-A.y/L, A.x/L);
    }
    
    //直线的交点
    Point getLineIntersection(Line L1,Line L2)
    {
        Vctor u = L1.p-L2.p;
        double t = Cross(L2.v,u)/Cross(L1.v,L2.v);
        return L1.p + L1.v*t;
    }
    
    //点到直线的距离
    double DistanceToLine(Point P,Line L)
    {
        return fabs(Cross(P-L.p,L.v))/Length(L.v);
    }
    
    //点到线段的距离
    double DistanceToSegment(Point P,Point A,Point B)
    {
        if(A==B) return Length(P-A);
        Vctor v1 = B-A, v2 = P-A, v3 = P-B;
        if (dcmp(Dot(v1,v2)) < 0) return Length(v2);
        else if (dcmp(Dot(v1,v3)) > 0) return Length(v3);
        else return fabs(Cross(v1,v2))/Length(v1);
    }
    
    //点到直线的映射
    Point getLineProjection(Point P,Line L)
    {
        return L.v + L.v*Dot(L.v,P-L.p)/Dot(L.v,L.v);
    }
    
    //判断线段是否规范相交
    bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)
    {
        double c1 = Cross(a2 - a1,b1 - a1), c2 = Cross(a2 - a1,b2 - a1),
               c3 = Cross(b2 - b1,a1 - b1), c4 = Cross(b2 - b1,a2 - b1);
        return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0;
    }
    
    //判断点是否在一条线段上
    bool OnSegment(Point P,Point a1,Point a2)
    {
        return dcmp(Cross(a1 - P,a2 - P))==0 && dcmp(Dot(a1 - P,a2 - P))<0;
    }
    
    //多边形面积
    double PolgonArea(Point *p,int n)
    {
        double area=0;
        for(int i=1;i<n-1;i++) area += Cross( p[i]-p[0] , p[i + 1]-p[0] );
        return area/2;
    }
    
    //判断圆与直线是否相交以及求出交点
    int getLineCircleIntersection(Line L,Circle C,vector<Point> &sol)
    {
        double t1,t2;
        double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y;
        double e = a*a + c*c , f = 2*(a*b + c*d),  g = b*b + d*d - C.r*C.r;
        double delta = f*f - 4.0*e*g;
        if(dcmp(delta)<0) return 0;
        else if(dcmp(delta)==0)
        {
            t1 = t2 = -f/(2.0*e);
            sol.push_back(L.point(t1));
            return 1;
        }
        else
        {
            t1 = (-f-sqrt(delta))/(2.0*e); sol.push_back(L.point(t1));
            t2 = (-f+sqrt(delta))/(2.0*e); sol.push_back(L.point(t2));
            return 2;
        }
    }
    
    //判断并求出两圆的交点
    double angle(Vctor v){return atan2(v.y,v.x);}
    int getCircleIntersection(Circle C1,Circle C2,vector<Point> &sol)
    {
        double d = Length(C1.c - C2.c);
        //圆心重合
        if(dcmp(d)==0)
        {
            if(dcmp(C1.r-C2.r)==0) return -1; //两圆重合
            else return 0; //包含关系
        }
    
        //圆心不重合
        if(dcmp(C1.r+C2.r-d)<0) return 0; // 相离
        if(dcmp(fabs(C1.r-C2.r)-d)>0) return 0; // 包含
    
        double a = angle(C2.c - C1.c);
        double da = acos((C1.r*C1.r + d*d - C2.r*C2.r) / (2*C1.r*d));
        Point p1 = C1.point(a - da), p2 = C1.point(a + da);
        sol.push_back(p1);
        if(p1==p2) return 1;
        sol.push_back(p2);
        return 2;
    }
    
    //求点到圆的切线
    int getTangents(Point p,Circle C,vector<Line> &sol)
    {
        Vctor u=C.c-p;
        double dis=Length(u);
        if(dis<C.r) return 0;
        else if(dcmp(dis-C.r) == 0)
        {
            sol.push_back(Line(p,Rotate(u,M_PI/2)));
            return 1;
        }
        else
        {
            double ang=asin(C.r/dis);
            sol.push_back(Line(p,Rotate(u,-ang)));
            sol.push_back(Line(p,Rotate(u,ang)));
            return 2;
        }
    }
    
    //求两圆的切线
    int getCircleTangents(Circle A,Circle B,Point *a,Point *b)
    {
        int cnt = 0;
        if(A.r<B.r){swap(A,B);swap(a,b);}
        //圆心距的平方
        double d2 = (A.c.x - B.c.x)*(A.c.x - B.c.x) + (A.c.y - B.c.y)*(A.c.y - B.c.y);
        double rdiff = A.r - B.r;
        double rsum = A.r + B.r;
        double base = angle(B.c - A.c);
        //重合有无限多条
        if(d2 == 0 && dcmp(A.r - B.r) == 0) return -1;
        //内切
        if(dcmp(d2-rdiff*rdiff) == 0)
        {
            a[cnt] = A.point(base);
            b[cnt] = B.point(base);
            cnt++;
            return 1;
        }
        //有外公切线
        double ang = acos((A.r - B.r) / sqrt(d2));
        a[cnt] = A.point(base + ang); b[cnt] = B.point(base + ang); cnt++;
        a[cnt] = A.point(base - ang); b[cnt] = B.point(base - ang); cnt++;
    
        //一条内切线
        if(dcmp(d2-rsum*rsum) == 0)
        {
            a[cnt] = A.point(base);
            b[cnt] = B.point(M_PI + base);
            cnt++;
        }//两条内切线
        else if(dcmp(d2-rsum*rsum) > 0)
        {
            double ang = acos((A.r + B.r) / sqrt(d2));
            a[cnt] = A.point(base + ang); b[cnt] = B.point(base + ang); cnt++;
            a[cnt] = A.point(base - ang); b[cnt] = B.point(base - ang); cnt++;
        }
        return cnt;
    }
    
    //--------------------------------------计算几何模板 - ed--------------------------------------
    Point p[MAX];
    
    bool cmp(Point p1,Point p2)
    {
        double tmp=Cross(p1-p[0],p2-p[0]);
        if(!dcmp(tmp)) return Length(p1-p[0])<Length(p2-p[0]);
        else return tmp>0;
    }
    vector<Point> graham_scan(int n)
    {
        vector<Point> ans;
        int idx=0;
        for(int i=1;i<n;i++)//选出Y坐标最小的点,若Y坐标相等,选择X坐标小的点
        {
            if(p[i].y<p[idx].y || (p[i].y == p[idx].y && p[i].x < p[idx].x)) idx=i;
        }
        swap(p[0],p[idx]);
        sort(p+1,p+n,cmp);
        for(int i=0;i<=2;i++) ans.push_back(p[i]);
        int top=2;
        for(int i=3;i<n;i++)
        {
            while(top>0 && Cross(p[i]-ans[top-1],ans[top]-ans[top-1]) >= 0)
            {
                ans.pop_back();
                top--;
            }
            ans.push_back(p[i]);
            top++;
        }
        return ans;
    }
    
    int n;
    int main()
    {
        int t;
        scanf("%d",&t);
        for(int kase=1;kase<=t;kase++)
        {
            scanf("%d",&n);
            for(int i=0;i<n;i++) scanf("%lf%lf",&p[i].x,&p[i].y);
            vector<Point> ans=graham_scan(n);
            double mini=0x3f3f3f3f;
            for(int i=0;i<ans.size();i++)
            {
                Point& p1 = ans[i];
                Point& p2 = (i==ans.size()-1)?ans[0]:ans[i+1];
                double dist=0;
                for(int i=0;i<n;i++) dist+=DistanceToLine(p[i],Line(p1,p2-p1));
                if(dist<mini) mini=dist;
            }
            printf("Case #%d: %.3lf
    ",kase,mini/(1.0*n));
        }
    }
    View Code

    PS.为保证跟前面的计算几何模板一致性,就把整个模板都copy了。

  • 相关阅读:
    Libevent库学习笔记
    最大的k个数问题
    MongoDB之整库备份还原单表collection备份还原
    精通MATLAB混合编程
    AutoCAD 2016中文版从入门到精通(第2版)
    MATLAB科学计算范例实战速查宝典
    Android系统应用开发实战详解
    AutoCAD快捷命令速查大全
    TCP IP入门经典(第5版)
    STC8系列单片机开发指南:面向处理器、程序设计和操作系统的分析与应用
  • 原文地址:https://www.cnblogs.com/dilthey/p/7764034.html
Copyright © 2011-2022 走看看