zoukankan      html  css  js  c++  java
  • 蓝桥杯

    G将军有一支训练有素的军队,这个军队除开G将军外,每名士兵都有一个直接上级(可能是其他士兵,也可能是G将军)。现在G将军将接受一个特别的任务,需要派遣一部分士兵(至少一个)组成一个敢死队,为了增加敢死队队员的独立性,要求如果一名士兵在敢死队中,他的直接上级不能在敢死队中。
    请问,G将军有多少种派出敢死队的方法。注意,G将军也可以作为一个士兵进入敢死队。
    输入格式
    输入的第一行包含一个整数n,表示包括G将军在内的军队的人数。军队的士兵从1至n编号,G将军编号为1。
    接下来n-1个数,分别表示编号为2, 3, ..., n的士兵的直接上级编号,编号i的士兵的直接上级的编号小于i。
    输出格式
    输出一个整数,表示派出敢死队的方案数。由于数目可能很大,你只需要输出这个数除10007的余数即可。
    样例输入1
    3
    1 1
    样例输出1
    4
    样例说明
    这四种方式分别是:
    1. 选1;
    2. 选2;
    3. 选3;
    4. 选2, 3。
    样例输入2
    7
    1 1 2 2 3 3
    样例输出2
    40

    数据规模与约定
    对于20%的数据,n ≤ 20;
    对于40%的数据,n ≤ 100;
    对于100%的数据,1 ≤ n ≤ 100000。


    资源约定:
    峰值内存消耗 < 256M
    CPU消耗 < 2000ms


    请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。

    所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。

    注意: main函数需要返回0
    注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
    注意: 所有依赖的函数必须明确地在源文件中 #include <xxx>, 不能通过工程设置而省略常用头文件。

    提交时,注意选择所期望的编译器类型。

    题解:

    看一眼题目,不难想到是DFS,然后由于十分类似于树形DP的经典入门题:http://www.cnblogs.com/dilthey/p/7152681.html

    所以可以套用着做:

    dp[i][0]:编号i者不去,(其子树下)可以有多少种方案
    dp[i][1]:编号i者去,(其子树下)可以有多少种方案

    我们可以先假设dp[i][0]包含编号为 i 的本人,以及其所有直接与间接下属都不去的情况(即这一算一种方案);

    那么所有叶子结点的dp[][0]=dp[][1]=1,(原本这里的dp[][0]应该等于0的);

    然后我们有状态转移方程:

      dp[i][1] = dp[i_1][0] * dp[i_2][0] * dp[i_3][0] * …… * dp[i_K][0] 
      dp[i][0] = (dp[i_1][0]+dp[i_1][1]) * …… * (dp[i_K][0]+dp[i_K][1])  (i_k为i的第k个下属,k = 1~K)

    最后答案为:( dp[1][0] + dp[1][1] - 1 ) % 10007

    即G将军本人去和不去的2种情况下的方案和,去掉“G将军和它的下属全都不去”这种非法情况,再按题目要求模10007.

    因为找不到OJ的地方所以AC不AC不太清楚的代码:

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 100000+10;
    const int MOD = 10007;
    
    int dp[maxn][2];
    //dp[i][0]:编号i者不去,(其子树下)可以有多少种方案
    //dp[i][1]:编号i者去,(其子树下)可以有多少种方案
    int n;
    
    struct Edge{
        int u,v;
        Edge(int a,int b){u=a,v=b;};
    };
    vector<Edge> E;
    vector<int> G[maxn];
    void addedge(int par,int child)
    {
        E.push_back(Edge(par,child));
        G[par].push_back(E.size()-1);
    }
    void init()
    {
        E.clear();
        for(int i=0;i<maxn;i++) G[i].clear();
    }
    
    void dfs(int now)
    {
        dp[now][0]=dp[now][1]=1;
        for(int i=0,nxt,_size=G[now].size();i<_size;i++)
        {
            nxt = E[G[now][i]].v;
            dfs(nxt);
            dp[now][1] = ( dp[now][1] * dp[nxt][0] )%MOD;
            dp[now][0] = ( dp[now][0] * (dp[nxt][0]+dp[nxt][1]) )%MOD;
        }
    }
    
    int main()
    {
        init();
    
        scanf("%d",&n);
        for(int i=2,u;i<=n;i++)
        {
            scanf("%d",&u);
            addedge(u,i);
        }
    
        dfs(1);
        printf("%d
    ",(dp[1][0]+dp[1][1]-1)%MOD);
    }
  • 相关阅读:
    什么是理想?
    leetcode 62. 不同路径-动态规划及优化,双100%
    使用双指针暴力解决力扣28题《实现 strStr()》
    使用双指针解决力扣27题《移除元素》
    SQL SERVER 数据库日志已满时清理日志的方法
    修改git提交的名字和邮箱
    React Native运行出现Could not find "iPhone X" simulator
    eosio 编译与部署
    恢复经常写博客的习惯
    MAC OS系统替换homebrew使用阿里云或中科大的镜像源
  • 原文地址:https://www.cnblogs.com/dilthey/p/8672743.html
Copyright © 2011-2022 走看看