zoukankan      html  css  js  c++  java
  • 2018牛客网暑期ACM多校训练营(第三场) H

    题目链接:https://www.nowcoder.com/acm/contest/141/H

    时间限制:C/C++ 1秒,其他语言2秒
    空间限制:C/C++ 262144K,其他语言524288K
    64bit IO Format: %lld

    题目描述

    Eddy has solved lots of problem involving calculating the number of coprime pairs within some range. This problem can be solved with inclusion-exclusion method. Eddy has implemented it lots of times. Someday, when he encounters another coprime pairs problem, he comes up with diff-prime pairs problem. diff-prime pairs problem is that given N, you need to find the number of pairs (i, j), where and are both prime and i ,j ≤ N. gcd(i, j) is the greatest common divisor of i and j. Prime is an integer greater than 1 and has only 2 positive divisors.

    Eddy tried to solve it with inclusion-exclusion method but failed. Please help Eddy to solve this problem.

    Note that pair (i1, j1) and pair (i2, j2) are considered different if i1 ≠ i2 or j1 ≠ j2.

    输入描述:

    Input has only one line containing a positive integer N.

    1 ≤ N ≤ 10^7

    输出描述:

    Output one line containing a non-negative integer indicating the number of diff-prime pairs (i,j) where i, j ≤ N
    示例1

    输入

    3

    输出

    2
    示例2

    输入

    5

    输出

    6

    题意:

    给出一个数字 n (1 ≤ n ≤ 1e7),求多少 数对(i, j) 满足 $frac{i}{{gcd left( {i,j} ight)}}$ 和 $frac{j}{{gcd left( {i,j} ight)}}$ 均为质数,且1 ≤ i, j ≤ n。

    题解:

    筛出[1,n]之间所有的素数,

    不难知道,每次取到其中两个素数组成一个素数对(x, y),不妨设 x < y,那么相应的就增加了 $2 imes leftlfloor {n/y} ight floor $ 个数对;

    例如,n=7,取到素数对(2,3),那么 $leftlfloor {n/3} ight floor = leftlfloor {7/3} ight floor = 2$,就有 $2 imes 2 = 4$ 个数对:(1*2,1*3) = (2,3)、(3,2)、(2*2,2*3) = (4,6)、(6,4);

    对欧拉筛法稍加改造,添加一行代码即可。时间复杂度O(n)。

    AC代码:

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const int maxn=1e7+5;
    
    int n;
    ll ans;
    
    bool isPrime[maxn];
    int prime[maxn/10],cnt;
    void screen()//欧拉筛法求素数
    {
        cnt=0;
        memset(isPrime,1,sizeof(isPrime));
        isPrime[0]=isPrime[1]=0;
        for(int i=2;i<=n;i++)
        {
            if(isPrime[i])
            {
                prime[cnt++]=i;
                
                ans+=2*(n/i)*(cnt-1);
                //每找到一个素数i,其就可以与前面所有出现过的cnt-1个素数组成cnt-1个素数对,相应的就有2*(n/i)*(cnt-1)个数对
                
            }
            for(int j=0;j<cnt;j++)
            {
                if(i*prime[j]>n) break;
                isPrime[(i*prime[j])]=0;
                if(i%prime[j]==0) break;
            }
        }
    }
    
    int main()
    {
        scanf("%d",&n);
        ans=0;
        screen();
        cout<<ans<<endl;
    }
  • 相关阅读:
    蓝鲸6.02双机部署文档
    蓝鲸考试
    蓝鲸6.03部署[部署方案优化]
    kubeadm部署高可用版Kubernetes1.21[基于centos7.6]
    Linux命令行优化,历史记录优化
    vim插件
    蓝鲸6.02部署与蓝鲸6.02自动化部署
    git生成公钥私钥和ppk
    Oracle的数据库日志(redolog)的使用说明
    oracle 11g的审计功能
  • 原文地址:https://www.cnblogs.com/dilthey/p/9371255.html
Copyright © 2011-2022 走看看