zoukankan      html  css  js  c++  java
  • 计蒜客 30990

    题目链接:https://nanti.jisuanke.com/t/30990

    Alice, a student of grade 6, is thinking about an Olympian Math problem, but she feels so despair that she cries. And her classmate, Bob, has no idea about the problem. Thus he wants you to help him. The problem is:

    We denote k!:

    k! = 1 * 2 * 3 * … * (k - 1) * k

    We denote S:

    S = 1 * 1! + 2 * 2! + … + (n - 1) * (n - 1)!

    Then S module n is ____________

    You are given an integer n.

    You have to calculate S modulo n.

    Input
    The first line contains an integer T(T≤1000), denoting the number of test cases.

    For each test case, there is a line which has an integer n.

    It is guaranteed that 2≤n≤10^18.

    Output
    For each test case, print an integer S modulo n.

    题意:

    假设 $Sleft( n ight) = 1 imes 1! + 2 imes 2! + cdots + left( {n - 1} ight) imes left( {n - 1} ight)!$,求 $Sleft( n ight)$ 模 $n$ 的余数。

    题解:

    $egin{array}{l} 1 + Sleft( n ight) \ = 1 + 1 imes 1! + 2 imes 2! + cdots + left( {n - 1} ight) imes left( {n - 1} ight)! = 2 imes 1! + 2 imes 2! + cdots + left( {n - 1} ight) imes left( {n - 1} ight)! \ = 2! + 2 imes 2! + cdots + left( {n - 1} ight) imes left( {n - 1} ight)! = 3 imes 2! + cdots + left( {n - 1} ight) imes left( {n - 1} ight)! \ = 3! + 3 imes 3! + cdots + left( {n - 1} ight) imes left( {n - 1} ight)! = 4 imes 3! + cdots + left( {n - 1} ight) imes left( {n - 1} ight)! \ = cdots = left( {n - 1} ight)! + left( {n - 1} ight) imes left( {n - 1} ight)! = n imes left( {n - 1} ight)! = n! \ end{array}$

    所以有 $Sleft( n ight)mod n = left( {n! - 1} ight)mod n = left( {n! + n - 1} ight)mod n = n!mod n + left( {n - 1} ight)mod n = n - 1$。

    AC代码:

    #include<bits/stdc++.h>
    using namespace std;
    int main()
    {
        int t;
        cin>>t;
        long long n;
        while(t--)
        {
            cin>>n;
            cout<<n-1<<endl;
        }
    }
  • 相关阅读:
    mongodb配置主[Master]从[Slave]同步
    consul[安装/服务启用/注册].md
    Mysql用户管理相关
    GIT简易操作手册与分支管理策略
    Java 集合类高阶面试题
    List和Set相关面试题
    Map类面试题
    JDK相关基础面试题
    Java面向对象面试题
    MySQL in CentOS 7 安装部署
  • 原文地址:https://www.cnblogs.com/dilthey/p/9571298.html
Copyright © 2011-2022 走看看