zoukankan      html  css  js  c++  java
  • 计蒜客 30990

    题目链接:https://nanti.jisuanke.com/t/30990

    Alice, a student of grade 6, is thinking about an Olympian Math problem, but she feels so despair that she cries. And her classmate, Bob, has no idea about the problem. Thus he wants you to help him. The problem is:

    We denote k!:

    k! = 1 * 2 * 3 * … * (k - 1) * k

    We denote S:

    S = 1 * 1! + 2 * 2! + … + (n - 1) * (n - 1)!

    Then S module n is ____________

    You are given an integer n.

    You have to calculate S modulo n.

    Input
    The first line contains an integer T(T≤1000), denoting the number of test cases.

    For each test case, there is a line which has an integer n.

    It is guaranteed that 2≤n≤10^18.

    Output
    For each test case, print an integer S modulo n.

    题意:

    假设 $Sleft( n ight) = 1 imes 1! + 2 imes 2! + cdots + left( {n - 1} ight) imes left( {n - 1} ight)!$,求 $Sleft( n ight)$ 模 $n$ 的余数。

    题解:

    $egin{array}{l} 1 + Sleft( n ight) \ = 1 + 1 imes 1! + 2 imes 2! + cdots + left( {n - 1} ight) imes left( {n - 1} ight)! = 2 imes 1! + 2 imes 2! + cdots + left( {n - 1} ight) imes left( {n - 1} ight)! \ = 2! + 2 imes 2! + cdots + left( {n - 1} ight) imes left( {n - 1} ight)! = 3 imes 2! + cdots + left( {n - 1} ight) imes left( {n - 1} ight)! \ = 3! + 3 imes 3! + cdots + left( {n - 1} ight) imes left( {n - 1} ight)! = 4 imes 3! + cdots + left( {n - 1} ight) imes left( {n - 1} ight)! \ = cdots = left( {n - 1} ight)! + left( {n - 1} ight) imes left( {n - 1} ight)! = n imes left( {n - 1} ight)! = n! \ end{array}$

    所以有 $Sleft( n ight)mod n = left( {n! - 1} ight)mod n = left( {n! + n - 1} ight)mod n = n!mod n + left( {n - 1} ight)mod n = n - 1$。

    AC代码:

    #include<bits/stdc++.h>
    using namespace std;
    int main()
    {
        int t;
        cin>>t;
        long long n;
        while(t--)
        {
            cin>>n;
            cout<<n-1<<endl;
        }
    }
  • 相关阅读:
    RK3288 GMAC整理
    Linux电源管理-Linux regulator framework概述
    SRAM、DRAM、SDRAM、DDR、DDR2、DDR3
    内核错误值
    module_param和module_param_array用法
    VGA
    如何获取显示器的EDID信息
    进程间通信--共享内存
    Java 中的 CAS 简述及原理解析
    volatile 关键字特性解析及单例模式下的使用
  • 原文地址:https://www.cnblogs.com/dilthey/p/9571298.html
Copyright © 2011-2022 走看看