zoukankan      html  css  js  c++  java
  • PyTorch的一些类及函数

    以下是一些我在使用PyTorch中遇到的一些类及函数,为了便于理解和使用,将官网中的说明摘录一些下来。

    torch.nn.modules.conv1d

    来源 https://pytorch.org/docs/stable/_modules/torch/nn/modules/conv.html#Conv1d

    class Conv1d(_ConvNd):
        r"""Applies a 1D convolution over an input signal composed of several input planes. """
        def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                     padding=0, dilation=1, groups=1,
                     bias=True, padding_mode='zeros'):
            kernel_size = _single(kernel_size)
            stride = _single(stride)
            padding = _single(padding)
            dilation = _single(dilation)
            super(Conv1d, self).__init__(
                in_channels, out_channels, kernel_size, stride, padding, dilation,
                False, _single(0), groups, bias, padding_mode)
    

    类的说明:对由多个输入平面组成的输入信号应用一维卷积

    官网中对初始化函数中一些参数的说明:

    in_channels (int): Number of channels in the input image

    out_channels (int): Number of channels produced by the convolution

    kernel_size (int or tuple): Size of the convolving kernel

    stride (int or tuple, optional): Stride of the convolution. Default: 1

    padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0

    dilation (int or tuple, optional): Spacing between kernel elements. Default: 1

    groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1

    bias (bool, optional): If True, adds a learnable bias to the output. Default: True

    padding_mode (string, optional). Accepted values zeros and circular Default: zeros

    机翻

    in_channels (int): 输入图像中的通道数

    out_channels (int): 由卷积产生的信道数

    kernel_size (int or tuple): 卷积核的大小

    stride (int or tuple, optional): 卷积的步幅

    padding (int or tuple, optional): 输入的两边都加上了零填充

    dilation (int or tuple, optional): 卷积核元素之间的间距

    groups (int, optional): 从输入通道到输出通道的阻塞连接数

    bias (bool, optional): 如果为“ True” ,则在输出中添加可学习的偏差

    padding_mode (string, optional): 接受值“0”和“循环”

    torch.nn.modules.conv2d

    来源 https://pytorch.org/docs/stable/_modules/torch/nn/modules/conv.html#Conv2d

    class Conv2d(_ConvNd):
        """Applies a 2D convolution over an input signal composed of several input planes."""
        def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                     padding=0, dilation=1, groups=1,
                     bias=True, padding_mode='zeros'):
            kernel_size = _pair(kernel_size)
            stride = _pair(stride)
            padding = _pair(padding)
            dilation = _pair(dilation)
            super(Conv2d, self).__init__(
                in_channels, out_channels, kernel_size, stride, padding, dilation,
                False, _pair(0), groups, bias, padding_mode)
    

    类的说明:在由多个输入平面组成的输入信号上应用二维卷积。

    官网中对初始化函数中一些参数的说明:

    in_channels (int): Number of channels in the input image

    out_channels (int): Number of channels produced by the convolution

    kernel_size (int or tuple): Size of the convolving kernel

    stride (int or tuple, optional): Stride of the convolution. Default: 1

    padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0

    dilation (int or tuple, optional): Spacing between kernel elements. Default: 1

    groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1

    bias (bool, optional): If True, adds a learnable bias to the output. Default: True

    padding_mode (string, optional). Accepted values zeros and circular Default: zeros

    机翻

    in_channels (int): 输入图像中的通道数

    out_channels (int): 由卷积产生的信道数

    kernel_size (int or tuple): 卷积核的大小

    stride (int or tuple, optional): 卷积的步幅

    padding (int or tuple, optional): 输入的两边都加上了零填充

    dilation (int or tuple, optional): 卷积核元素之间的间距

    groups (int, optional): 从输入通道到输出通道的阻塞连接数

    bias (bool, optional): 如果为“ True” ,则在输出中添加可学习的偏差

    padding_mode (string, optional): 接受值“0”和“循环”

    以下是博客中对参数的含义做的进一步解释。

    • stride(步长):控制cross-correlation的步长,可以设为1个int型数或者一个(int, int)型的tuple。

    • padding(补0):控制zero-padding的数目。=0时,不填充,原图与卷积核进行卷积;=1时,在原图四边填充一行(一列),具体填充的数据由padding_mode控制,一般填0。

    • dilation(扩张):控制kernel点(卷积核点)的间距; 也被称为 "à trous"算法. 可以在此github地址查看:Dilated convolution animations

    • groups(卷积核个数):这个比较好理解,通常来说,卷积个数唯一,但是对某些情况,可以设置范围在1 —— in_channels中数目的卷积核:

      At groups=1, all inputs are convolved to all outputs.

      At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.

      At groups=in_channels, each input channel is convolved with its own set of filters (of size ⌊out_channelsin_channels⌋
      ).

    下面是官网对于nn.Conv2d输入输出shape的说明。

    以及官网中给出的样例

    >>> # With square kernels and equal stride

    >>> m = nn.Conv2d(16, 33, 3, stride=2)

    >>> # non-square kernels and unequal stride and with padding

    >>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))

    >>> # non-square kernels and unequal stride and with padding and dilation

    >>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1))

    >>> input = torch.randn(20, 16, 50, 100)

    >>> output = m(input)

    参考资料

    1. PyTorch官网
    2. PyTorch学习笔记(9)——nn.Conv2d和其中的padding策略
  • 相关阅读:
    SpringBoot集成springfox-swagger2访问swagger-ui.html页面弹窗提示问题
    Java数据结构与算法之队列(Queue)实现
    华为S9300交换机热补丁安装
    ubnt EdgeSwitch 24-Port 250W DHCP_CLI[osapiTimer]: dhcp_prot.c(812) 1285780 %% Failed to acquire an IP address on Network Port; DHCP Server did not respond.
    windows server 2012 r2查看远程用户登录IP
    iptables && firewall 的简单应用
    deepin如何自定义启动器图标,如firefox
    deepin如何访问samba共享文件夹
    vsftpd服务搭建
    华为服务器RH 2288H v2 or v3安装系统
  • 原文地址:https://www.cnblogs.com/diralpo/p/12625231.html
Copyright © 2011-2022 走看看