模型存储好之后,训练好的参数也会保存,下次就可以直接用训练好的模型来预测了。
1 import tensorflow as tf
2 from tensorflow.examples.tutorials.mnist import input_data
3
4 #载入数据集
5 mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
6
7 #每个批次100张照片
8 batch_size = 100
9 #计算一共有多少个批次
10 n_batch = mnist.train.num_examples // batch_size
11
12 #定义两个placeholder
13 x = tf.placeholder(tf.float32,[None,784])
14 y = tf.placeholder(tf.float32,[None,10])
15
16 #创建一个简单的神经网络,输入层784个神经元,输出层10个神经元
17 W = tf.Variable(tf.zeros([784,10]))
18 b = tf.Variable(tf.zeros([10]))
19 prediction = tf.nn.softmax(tf.matmul(x,W)+b)
20
21 #二次代价函数
22 # loss = tf.reduce_mean(tf.square(y-prediction))
23 loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
24 #使用梯度下降法
25 train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
26
27 #初始化变量
28 init = tf.global_variables_initializer()
29
30 #结果存放在一个布尔型列表中
31 correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
32 #求准确率
33 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
34
35 saver = tf.train.Saver()
36
37 with tf.Session() as sess:
38 sess.run(init)
39 print(sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}))
40 saver.restore(sess,'net/my_net.ckpt')
41 print(sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}))
0.098
INFO:tensorflow:Restoring parameters from net/my_net.ckpt
0.917
初始化权值与偏置值都是0,使用未训练好的模型预测准确率为0.098,读取模型之后,预测准确率0.917。
2019-06-19 10:52:46