zoukankan      html  css  js  c++  java
  • 【POJ1845】Sumdiv【算数基本定理 + 逆元】

    描述
    Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).
    输入
    The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.
    输出
    The only line of the output will contain S modulo 9901.
    样例输入
    2 3
    样例输出
    15
    提示
    2^3 = 8.
    The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
    15 modulo 9901 is 15 (that should be output).

    大概意思是让我们求 (a^b) 的所有因数的和膜9901的值
    我们知道在算数基本定理中有 : (a=p_{1}^{c_{1}}*p_{2}^{c_{2}}........*p_{n}^{c_{n}})(第一次用LaTeX)
    所以(a^b)的约数和为 ((1+p_{1}+p_{1}^{2}.......+p_{1}^{b*c_{1}})*(1+p_{2}+p_{2}^{2}.......+p_{2}^{b*c_{2}}).....*(1+p_{n}+p_{n}^{2}.......+p_{n}^{b*c_{n}}))
    对于上面的每一项我们用等比公式求和
    (1+p_{1}+p_{1}^{2}.......+p_{1}^{b*c_{1}}) = (p_{1}^{b*c_{1}+1}-1)/(p_{1}-1)

    #include <cstdio>
    #include <vector>
    typedef long long int ll;
    const ll mod=9901;
    std::vector<ll> prime;
    std::vector<ll> times;
    inline void divide(ll n) {
        for(ll i=2;i*i<=n;++i) {
            if(n%i==0) {
                prime.push_back(i);ll cnt=0;
                while(n%i==0) {n/=i;++cnt;}
                times.push_back(cnt);
            }
        }
        if(n>1) {prime.push_back(n);times.push_back(1);}
    }
    inline ll qpow(ll n,ll k) {
        ll ans=1;
        while(k) {
            if(k&1) ans=ans*n%mod;
            n=n*n%mod;k>>=1;
        }
        return ans;
    }
    int main() {
        ll a,b;scanf("%lld%lld",&a,&b);
        divide(a);
        ll ans=1;
        for(int i=0,end=prime.size();i<end;++i) {
            times[i]*=b;
            if((prime[i]-1)%mod==0) ans=ans*(times[i]+1)%mod;
            else ans=ans*((qpow(prime[i],times[i]+1)-1+mod)*qpow(prime[i]-1,mod-2)%mod)%mod;
        }
        printf("%lld
    ",ans);
        return 0;
    }
    
  • 相关阅读:
    RHEL iptables
    搭建类似生产环境的RAC
    [大数据入门] Cloudera-Hadoop 理论
    js中的正则表达式【常用】
    html-css-js基本理解和简单总结
    python的socket.recv函数陷阱
    python异步编程--回调模型(selectors模块)
    python并发学习总结
    python描述符学习
    python网络编程基础
  • 原文地址:https://www.cnblogs.com/dixiao/p/13654551.html
Copyright © 2011-2022 走看看