zoukankan      html  css  js  c++  java
  • [国家集训队]Crash的数字表格

    题意

    求这个(sumlimits_{i = 1}^{n}sumlimits_{j = 1}^{m}lcm(i,j) mod (20101009))

    想法

    以下(n > m)
    在物理课上推出了柿子(逃
    回家了拍草稿纸上来
    (sumlimits_{i = 1}^{n}sumlimits_{j = 1}^{m}lcm(i,j))
    不想写一大堆的(LaTex)下面写出的等式都是连等的

    (sumlimits_{i = 1}^{n}sumlimits_{j = 1}^{m}lcm(i,j))
    (sumlimits_{i = 1}^{n}sumlimits_{j = 1}^{m}frac{i*j}{gcd(i,j)})
    改为枚举(gcd(i,j) = d)
    (sumlimits_{d = 1}^{n}sumlimits_{i = 1}^{lfloorfrac{n}{d} floor}sumlimits_{j = 1}^{lfloorfrac{m}{d} floor}i * j * d * [gcd(i,j) == 1])
    再用莫反的套路
    (sumlimits_{d = 1}^{n}sumlimits_{i = 1}^{lfloorfrac{n}{d} floor}sumlimits_{j = 1}^{lfloorfrac{m}{d} floor}sumlimits_{s|gcd(i,j)}i * j * d*mu(s))
    分类一下
    (sumlimits_{d = 1}^{n}dsumlimits_{i = 1}^{lfloorfrac{n}{d} floor}sumlimits_{j = 1}^{lfloorfrac{m}{d} floor}sumlimits_{s|gcd(i,j)}i * j * mu(s))
    再把后三个求和改为枚举(s)
    (sumlimits_{d = 1}^{n}dsumlimits_{s}^{lfloorfrac{n}{d} floor}sumlimits_{i = 1}^{lfloorfrac{n}{ds} floor}sumlimits_{j = 1}^{lfloorfrac{m}{ds} floor}i * j * mu(s) * s^2)
    (sumlimits_{d = 1}^{n}dsumlimits_{s}^{lfloorfrac{n}{d} floor}mu(s) * s^2sumlimits_{i = 1}^{lfloorfrac{n}{ds} floor}isumlimits_{j = 1}^{lfloorfrac{m}{ds} floor}j)
    后面两个求和用等差公式
    此时这个柿子是(O(n^2))
    接下来的步骤为了降低复杂度
    (sumlimits_{d = 1}^{n}d * ssumlimits_{s}^{lfloorfrac{n}{d} floor}mu(s) * ssumlimits_{i = 1}^{lfloorfrac{n}{ds} floor}isumlimits_{j = 1}^{lfloorfrac{m}{ds} floor}j)
    改枚举(T = d * s)
    (sumlimits_{T = 1}^{n}Tsumlimits_{i = 1}^{lfloorfrac{n}{T} floor}isumlimits_{j = 1}^{lfloorfrac{m}{T} floor}jsumlimits_{s|T}s*mu(s))
    这样中间两个求和是(O(1))最后那个求和我们可以在筛(mu)时一并筛出(mu(s)*s)然后用狄利克雷前缀和
    复杂度(O(n + N))

    代码

    #include<iostream>
    #include<cstdio>
    #define ll long long
    
    ll n,m,mod = 20101009;
    ll mu[10000010],p[10000010],f[10000010],tot;
    bool v[10000010];
    
    int N = 1e7,cnt;
    
    void pre(){
    	f[1] = mu[1] = 1;
    	for(int i = 2;i <= 1e7;++i){
    		if(!v[i]) mu[i] = -1,p[++tot] = i;
    		f[i] = (mu[i] * i + mod) % mod;
    		for(int j = 1;j <= tot && i * p[j] <= 1e7;++j){
    			v[p[j] * i] = 1;
    			if(i % p[j] == 0){
    				mu[i * p[j]] = 0;
    				break;
    			}
    			mu[i * p[j]] = -mu[i];
    		}
    	}
    	f[1] = 1;
    	for(int j = 1;j <= tot;++j)
    	for(int i = 1;i * p[j] <= 1e7;++i)
    	(f[i * p[j]] += f[i]) %= mod;
    }
    
    ll ans = 0;
    
    ll sum(int x){
    	ll ans = 1ll * x * f[x] % mod;
    	ans = ans * 1ll * ((n / x + 1) * (n / x) / 2 % mod) % mod;
    	ans = ans * 1ll * ((m / x + 1) * (m / x) / 2 % mod) % mod;
    	return ans % mod;
    }
    
    int main(){
    	scanf("%lld%lld",&n,&m);
    	if(m > n)
    	std::swap(m,n);
    	pre();
    	for(int i = 1;i <= n;++i)
    	ans = (ans + sum(i)) % mod;
    	std::cout<<ans<<std::endl;
    }
    
  • 相关阅读:
    如何进行Django单元测试
    django使用celery实现异步操作
    django 多并发,多线程。
    cookies设置时间
    Mysql实现企业级日志管理、备份与恢复
    Redis与Memcached的区别
    cookie 和session 的区别详解
    python内存泄露查找
    浙大月赛ZOJ Monthly, August 2014
    Vector
  • 原文地址:https://www.cnblogs.com/dixiao/p/14253349.html
Copyright © 2011-2022 走看看