zoukankan      html  css  js  c++  java
  • CF993E Nikita and Order Statistics

    考虑记录一个前缀和(s),当(a_i < x)时这一位为(1),否则为(0);
    记录一下(s[i])的数量(f[i])
    那么就有(ans_k = sum_{i = 0}^{n - k}f_i * f_{i + k})
    FFT经典操作,翻转数组。
    (g[i] = f[n - i])
    那么发现(ans_i = h[n - i] = sum f[j]g[n - i - j])
    于是计算卷积就好了,不过注意数据范围和(ans_0)要特判。

    CF993E Nikita and Order Statistics
    #include<iostream>
    #include<cstdio>
    #include<complex>
    #define ll long long
    #define comp std::complex<double>
    #define fft fast_fast_tle
    #define int long long
    
    const int N = (1 << 20) + 10 << 1;
    const double PI = std::acos(-1.0);
    
    inline ll read(){
    	ll ans = 0,f = 1;
    	char a = getchar();
    	while(!(a <= '9' && a >= '0') && (a != '-'))a = getchar();
    	if(a == '-')
    	f = -1,a = getchar(); 
    	while(a <= '9' && a >= '0')
    	ans = (ans << 3) + (ans << 1) + (a & 15),a = getchar();
    	return ans * f;
    }
    
    ll n,m,lim,r[N];
    comp a[N],b[N];
    
    void fft(comp *a,int type){
    	for(int i = 0;i < lim;++i)
    	if(i < r[i])
    	std::swap(a[i],a[r[i]]);
    	for(int i = 1;i < lim;i <<= 1){
    		comp x(cos(PI / i),type * sin(PI / i));
    		for(int j = 0;j < lim;j += (i << 1)){
    			comp y(1,0);
    			for(int k = 0;k < i;++k,y *= x){
    			comp p = a[j + k],q = y * a[j + k + i];
    			a[j + k] = p + q;a[j + k + i] = p - q;
    			}
    		}
    	}
    }
    ll ni,k;
    ll num[N];
    ll s[N],f[N];
    
    inline ll get0(){
    	ll ans = 0;
    	for(int i = 0;i <= ni;++i)
    	ans += f[i] * (f[i] - 1) / 2;
    	return ans;
    }
    
    signed main(){
    	ni = read(),k = read();
    	for(int i = 1;i <= ni;++i){
    		s[i] = s[i - 1] + (read() < k);
    //		std::cout<<s[i]<<std::endl;
    		f[s[i]] ++ ; 
    	}
    	f[0] ++ ;
    	n = ni,m = ni;
    	for(int i = 0;i <= n;++i)
    	a[i] = f[i];
    	for(int i = 0;i <= m;++i)
    	b[i] = f[ni - i];
    	int l = 0;
    	for(lim = 1;lim <= n + m;lim <<= 1)++l;
    	for(int i = 0;i < lim;++i)
    	r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
    	fft(a,1),fft(b,1);
    	for(int i = 0;i <= lim;++i)
    	a[i] *= b[i];
    	fft(a,-1);
    	std::cout<<get0()<<" "; 
    	for(int i = n - 1;i >= 0;--i)
    	std::cout<<(int)(0.5 + a[i].real() / lim)<<" ";
    }
    
    
  • 相关阅读:
    页面整体布局思路
    CSS3转换、过渡、动画效果及css盒子模型
    CSS随笔
    CSS基础,认识css样式
    HTML基础表单
    HTML基础
    java.sql.SQLException: 调用中无效的参数DSRA0010E: SQL 状态 = null,错误代码 = 17,433
    There is no Action mapped for namespace / and action name accredit.
    myeclipse开启后卡死、building workspace缓慢 问题解决
    you need to upgrade the working copy first
  • 原文地址:https://www.cnblogs.com/dixiao/p/14847239.html
Copyright © 2011-2022 走看看