zoukankan      html  css  js  c++  java
  • [学习笔记]快速莫比乌斯与快速沃尔什变换

    直接给定形式吧。

    不给证明了。

    或卷积

    \(c_i = \sum_{i | j =k} a_i * b_i\)

    写作\(FWT(A)_i = \sum_{j \in i}A_j\)

    \(A\)对半分为\(A_0,A_1\)

    \(FWT(A) = \left\{ \begin{aligned} (FWT(A_0),FWT(A_0) + FWT(A_1))\\ A(len_A = 0) \end{aligned} \right.\)

    先转成\(FWT\)后,两式单点乘,再\(IFWT\)

    与卷积

    \(c_i = \sum_{i \& j =k} a_i * b_i\)

    写作\(FWT(A)_i = \sum_{i \in j}A_j\)

    先转成\(FWT\)后,两式单点乘,再\(IFWT\)

    \(FWT(A) = \left\{ \begin{aligned} (FWT(A_0) + FWT(A_1),FWT(A_1))\\ A(len_A = 0) \end{aligned} \right.\)

    异或卷积

    \(FWT(A) = \left\{ \begin{aligned} (FWT(A_0) + FWT(A_1),FWT(A_0) - FWT(A_1))\\ A\ (len_A = 0) \end{aligned} \right.\)

    \(IFWT(A) = \left\{ \begin{aligned} (\frac{FWT(A_0) + FWT(A_1)}{2},\frac{FWT(A_0) - FWT(A_1)}{2})\\ A\ (len_A = 0) \end{aligned} \right.\)

  • 相关阅读:
    js笔记4
    js笔记3
    js笔记2
    js笔记1
    前端笔记13
    (7)第3章的开始
    (6)第2章的尾巴~
    (5)自定义数据结构再探
    我的学习方法(6)
    (4)自定义数据结构初探
  • 原文地址:https://www.cnblogs.com/dixiao/p/15736109.html
Copyright © 2011-2022 走看看