zoukankan      html  css  js  c++  java
  • hdu3416Marriage Match IV (网络流+最短路)

    题目链接

    题意

    N个城市M条路径,给定起点A,终点B,求有几条从A到B的最短路(其中每经过的路径不能重复)

    解题思路

    先用最短路求出A到B的最短路Min,也求出A到每个城市的距离dis[N],然后反向求B到A的最短路,得到B到每个城市的最短距离dis2[N],然后遍历每条路径edge,如果dis[edge.from] + edge.len + dis2[edge.to]== Min,就说明这条路径一定是A到B的最短路中会经过的路径,,每条路径的容量为1,把每条符合条件的路径加入到最大流的图中,建完图后,以A为源点,B为汇点跑最大流即可(用EdmondsKarp会超时,跑Dinic即可)

    AC代码

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    typedef pair<int,int> pii;
    const int maxn = 1e5+5;
    const int INF = 0x3f3f3f3f;
    struct Edge 
    {
        int from,to,cap,flow;
        Edge(){}
        Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
    };
    
    struct Dinic
    {
        int n,m,s,t;
        vector<Edge> edges;
        vector<int> G[maxn];
        bool vis[maxn];
        int d[maxn];
        int cur[maxn];
    
        void init(int n){
            for(int i=0;i<n;i++) G[i].clear();
            edges.clear();
        }
    
        void AddEdge(int from,int to,int cap){
            edges.push_back(Edge(from,to,cap,0));
            edges.push_back(Edge(to,from,0,0));
            m = edges.size();
            G[from].push_back(m-2);
            G[to].push_back(m-1);
        }
    
        bool BFS()
        {
            memset(vis,0,sizeof(vis));
            queue<int> Q;
            Q.push(s);
            d[s] = 0;
            vis[s] = 1;
            while(!Q.empty()){
                int x = Q.front();
                Q.pop();
                for(int i=0;i<G[x].size();i++){
                    Edge& e = edges[G[x][i]];
                    if(!vis[e.to]&&e.cap > e.flow){
                        vis[e.to] = 1;
                        d[e.to] = d[x]+1;
                        Q.push(e.to);
                    }
                }
            }
            return vis[t];
        }
    
        int DFS(int x,int a){
            if(x==t || a==0)return a;
            int flow = 0,f;
            for(int &i=cur[x];i<G[x].size();i++){
                Edge& e = edges[G[x][i]];
                if(d[x]+1==d[e.to] && (f=DFS(e.to,min(a,e.cap-e.flow)))>0){
                    e.flow += f;
                    edges[G[x][i]^1].flow -= f;
                    flow += f;
                    a -= f;
                    if(a==0)break;
                }
            }
            return flow;
        }
    
        int Maxflow(int s,int t){
            this->s = s,this->t = t;
            int flow = 0;
            while(BFS()){
                memset(cur,0,sizeof(cur));
                flow += DFS(s,INF);
            }
            return flow;
        }
        
    };
    
    vector<Edge> G1[maxn];
    vector<Edge> G2[maxn];
    int N,M;
    int dis[maxn],dis2[maxn];
    bool vis[maxn];
    
    void dijkstra(int A,vector<Edge> G[maxn],int dis[maxn])
    {
        memset(vis,0,sizeof(vis));
        priority_queue<pii,vector<pii>,greater<pii> > Q;
        dis[A] = 0;
        Q.push(pii(dis[A],A));
        while(!Q.empty()){
            pii t = Q.top();
            Q.pop();
            int d = t.first;
            int u = t.second;
            for(int i=0;i<G[u].size();i++){
                Edge e = G[u][i];
                if(e.cap + d < dis[e.to]){
                    dis[e.to] = e.cap + d;
                    Q.push(pii(dis[e.to],e.to));
                }
            }
        }
    }
    
    int main(int argc, char const *argv[])
    {
        ios::sync_with_stdio(false);
        cin.tie(0);
        int T = 0;
        cin >> T;
        Dinic ek;
        while(T--){
            cin >> N >> M;
            ek.init(N);
            for(int i=0;i<=N;i++){
                G1[i].clear();
                G2[i].clear();
            }
            int a,b,c;
            Edge e;
            for(int i=0;i<M;i++){
                cin >> a >> b >> c;
                e.from = a;
                e.to = b;
                e.cap = c;
                G1[e.from].push_back(e);
                swap(e.to,e.from);
                G2[e.from].push_back(e);
            }
            int A,B;
            cin >> A >> B;
            memset(dis,0x3f,sizeof(dis));
            dijkstra(A,G1,dis);             //正向跑最短路
            memset(dis2,0x3f,sizeof(dis2));
            int Min = dis[B];               
            dijkstra(B,G2,dis2);            //反向跑最短路
            for(int i=1;i<=N;i++){
                for(int j=0;j<G1[i].size();j++){
                    e = G1[i][j];
                    if(dis[e.from] + e.cap + dis2[e.to]==Min){
                        ek.AddEdge(e.from,e.to,1);
                    }
                }
            }
            cout << ek.Maxflow(A,B) << endl;
        }
        
        return 0;
    }
    
  • 相关阅读:
    Chapter1-data access reloaded:Entity Framework(上)
    Part1-Redefining your data-access strategy 重新定义你的数据访问策略
    ora-12541无监听的一种场景
    GridView根据一列自动计算(转载)
    百度Fex webuploader.js上传大文件失败
    JS文件中引用另一个JS文件
    连接虚拟机的SQLServer
    Spring中Bean的生命周期
    Spring中Bean的作用范围调整
    Spring中三种创建Bean对象的方式
  • 原文地址:https://www.cnblogs.com/django-lf/p/9741928.html
Copyright © 2011-2022 走看看