zoukankan      html  css  js  c++  java
  • Keras之 cifar10数据集使用keras generator读取、模型训练、预测

      本文将介绍:

      使用keras实现resnet50模型

      实现迁移学习-finetune

      一,下载kaggle-cifar10数据

      下载dataset到本地目录cifar10中

      二,实现tensorflow动态按需分配GPU

      import matplotlib as mpl

      import matplotlib.pyplot as plt

      import numpy as np

      import os

      import pandas as pd

      import sklearn

      import sys

      import tensorflow as tf

      import time

      from tensorflow import keras

      print(tf.__version__)

      print(sys.version_info)

      for module in mpl, np, pd, sklearn, tf, keras:

      print(module.__name__, module.__version__)

      # 一,实现tensorflow动态按需分配GPU

      from tensorflow.compat.v1 import ConfigProto

      from tensorflow.compat.v1 import InteractiveSession

      config = ConfigProto()

      config.gpu_options.allow_growth = True

      session = InteractiveSession(config=config)

      三,读取训练集、测试集的csv文件数据和训练集、测试集数据对应关系

      # 二,读取训练集、测试集的csv文件数据和训练集、测试集数据对应关系

      class_names = [

      'airplane',

      'automobile',

      'bird',

      'cat',

      'deer',

      'dog',

      'frog',

      'horse',

      'ship',

      'truck',

      ]

      train_lables_file = './cifar10/trainLabels.csv'

      test_csv_file = './cifar10/sampleSubmission.csv'

      train_folder = './cifar10/train/'

      test_folder = './cifar10/test'

      def parse_csv_file(filepath, folder):

      """Parses csv files into (filename(path), label) format"""

      results = []

      with open(filepath, 'r') as f:

      lines = f.readlines()[1:]

      for line in lines:

      image_id, label_str = line.strip(' ').split(',')

      image_full_path = os.path.join(folder, image_id + '.png')

      results.append((image_full_path, label_str))

      return results

      train_labels_info = parse_csv_file(train_lables_file, train_folder)

      test_csv_info = parse_csv_file(test_csv_file, test_folder)

      import pprint

      pprint.pprint(train_labels_info[0:5])

      pprint.pprint(test_csv_info[0:5])

      print(len(train_labels_info), len(test_csv_info))

      四,将对应关系转换为dataframe类型

      # 四,将对应关系转换为dataframe类型

      # train_df = pd.DataFrame(train_labels_info)

      train_df = pd.DataFrame(train_labels_info[0:45000])

      valid_df = pd.DataFrame(train_labels_info[45000:])

      test_df = pd.DataFrame(test_csv_info)

      train_df.columns = ['filepath', 'class']

      valid_df.columns = ['filepath', 'class']

      test_df.columns = ['filepath', 'class']

      print(train_df.head())

      print(valid_df.head())

      print(test_df.head())

      五,使用ImageDataGenerator加载数据并做数据增强

      # 五,使用ImageDataGenerator加载数据并做数据增强

      height = 32

      width = 32

      channels = 3

      batch_size = 32

      num_classes = 10

      train_datagen = keras.preprocessing.image.ImageDataGenerator(

      rescale = 1./255,

      rotation_range = 40,

      width_shift_range = 0.2,

      height_shift_range = 0.2,

      shear_range = 0.2,

      zoom_range = 0.2,

      horizontal_flip = True,

      fill_mode = 'nearest',

      )

      train_generator = train_datagen.flow_from_dataframe(

      train_df,

      directory = './',

      x_col = 'filepath',

      y_col = 'class',

      classes = class_names,

      target_size = (height, width),

      batch_size = batch_size,

      seed = 7,

      shuffle = True,

      class_mode = 'sparse',

      )

      valid_datagen = keras.preprocessing.image.ImageDataGenerator(

      rescale = 1./255)

      valid_generator = valid_datagen.flow_from_dataframe(

      valid_df,

      directory = './',

      x_col = 'filepath',

      y_col = 'class',

      classes = class_names,

      target_size = (height, width),

      batch_size = batch_size,

      seed = 7,

      shuffle = False,

      class_mode = "sparse")

      train_num = train_generator.samples

      valid_num = valid_generator.samples

      print(train_num, valid_num)

      六,查看generator数据

      for i in range(2):

      x, y = train_generator.next()

      print(x.shape, y.shape)

      print(y)

      七,构建模型

      # 七,构建模型

      model = keras.models.Sequential([

      keras.layers.Conv2D(filters=128, kernel_size=3, padding='same',

      activation='relu',

      input_shape=[width, height, channels]),

      keras.layers.BatchNormalization(),

      keras.layers.Conv2D(filters=128, kernel_size=3, padding='same',

      activation='relu'),

      keras.layers.BatchNormalization(),

      keras.layers.MaxPool2D(pool_size=2),

      keras.layers.Conv2D(filters=256, kernel_size=3, padding='same',

      activation='relu'),

      keras.layers.BatchNormalization(),

      keras.layers.Conv2D(filters=256, kernel_size=3, padding='same',

      activation='relu'),

      keras.layers.BatchNormalization(),

      keras.layers.MaxPool2D(pool_size=2),

      keras.layers.Conv2D(filters=512, kernel_size=3, padding='same',

      activation='relu'),

      keras.layers.BatchNormalization(),

      keras.layers.Conv2D(filters=512, kernel_size=3, padding='same',

      activation='relu'),

      keras.layers.BatchNormalization(),

      keras.layers.MaxPool2D(pool_size=2),

      keras.layers.Flatten(),

      keras.layers.Dense(512, activation='relu'),

      keras.layers.Dense(num_classes, activation='softmax'),

      ])

      model.compile(loss="sparse_categorical_crossentropy",

      optimizer="adam", metrics=['accuracy'])

      model.summary()

      八,训练模型

      # 八,训练模型

      epochs = 20

      history = model.fit_generator(train_generator,

      steps_per_epoch = train_num // batch_size,

      epochs = epochs,

      validation_data = valid_generator,

      validation_steps = valid_num // batch_size)

      九,打印模型训练曲线

      # 九,打印模型训练曲线

      def plot_learning_curves(history, label, epcohs, min_value, max_value):

      data = {}

      data[label] = history.history[label]

      data['val_'+label] = history.history['val_'+label]

      pd.DataFrame(data).plot(figsize=(8, 5))

      plt.grid(True)

      plt.axis([0, epochs, min_value, max_value])

      plt.show()

      plot_learning_curves(history, 'accuracy', epochs, 0, 1)

      plot_learning_curves(history, 'loss', epochs, 0, 2)

      十,使用keras.ImageDataGenerator加载测试集数据

      # 十,使用keras.ImageDataGenerator加载测试集数据

      test_datagen = keras.preprocessing.image.ImageDataGenerator(

      rescale = 1./255)

      test_generator = valid_datagen.flow_from_dataframe(

      test_df,

      directory = './',

      x_col = 'filepath',

      y_col = 'class',

      classes = class_names,

      target_size = (height, width),

      batch_size = batch_size,

      seed = 7,

      shuffle = False,

      class_mode = "sparse")

      test_num = test_generator.samples

      print(test_num)

      十一,使用测试集预测模型结果

      # 十一,使用测试集预测模型结果

      test_predict = model.predict_generator(test_generator,

      workers = 10,

      use_multiprocessing = True)

      1,测试集预测模型结果维度形状

      print(test_predict.shape)

      2,抽取前5条数据查看

      print(test_predict[0:5])

      3,取结果数值为最大的为预测结果

      test_predict_class_indices = np.argmax(test_predict, axis = 1)

      4,取前5条结果查看

      print(test_predict_class_indices[0:5])

      5,将结果转化为特征名称

      test_predict_class = [class_names[index]

      for index in test_predict_class_indices]

      查看前五条结果

      print(test_predict_class[0:5])

      十二,将预测结果写入到submission.csv文件中,并在kaggle上提交

      # 十二,将预测结果写入到submission.csv文件中,并在kaggle上提交

      def generate_submissions(filename, predict_class):

      with open(filename, 'w') as f:

      f.write('id,label ')

      for i in range(len(predict_class)):

      f.write('%d,%s ' % (i+1, predict_class[i]))

      output_file = "./cifar10/submission.csv"

      generate_submissions(output_file, test_predict_class)

      十三,总结代码

      #!/usr/bin/env python3

      # -*- coding: utf-8 -*-

      import matplotlib as mpl

      import matplotlib.pyplot as plt

      import numpy as np

      import os

      import pandas as pd

      import sklearn

      import sys

      import tensorflow as tf

      import time

      from tensorflow import keras

      print(tf.__version__)

      print(sys.version_info)

      for module in mpl, np, pd, sklearn, tf, keras:

      print(module.__name__, module.__version__)

      # 一,实现tensorflow动态按需分配GPU

      from tensorflow.compat.v1 import ConfigProto

      from tensorflow.compat.v1 import InteractiveSession

      config = ConfigProto()

      config.gpu_options.allow_growth = True

      session = InteractiveSession(config=config)

      # 二,读取训练集、测试集的csv文件数据和训练集、测试集数据对应关系

      class_names = [

      'airplane',

      'automobile',

      'bird',

      'cat',

      'deer',

      'dog',

      'frog',

      'horse',

      'ship',

      'truck',

      ]

      train_lables_file = './cifar10/trainLabels.csv'

      test_csv_file = './cifar10/sampleSubmission.csv'

      train_folder = './cifar10/train/'

      test_folder = './cifar10/test'

      def parse_csv_file(filepath, folder):

      """Parses csv files into (filename(path), label) format"""

      results = []

      with open(filepath, 'r') as f:

      lines = f.readlines()[1:]

      for line in lines:

      image_id, label_str = line.strip(' ').split(',')

      image_full_path = os.path.join(folder, image_id + '.png')

      results.append((image_full_path, label_str))

      return results

      train_labels_info = parse_csv_file(train_lables_file, train_folder)

      test_csv_info = parse_csv_file(test_csv_file, test_folder)

      import pprint

      pprint.pprint(train_labels_info[0:5])

      pprint.pprint(test_csv_info[0:5])

      print(len(train_labels_info), len(test_csv_info))

      # 四,将对应关系转换为dataframe类型

      # train_df = pd.DataFrame(train_labels_info)

      train_df = pd.DataFrame(train_labels_info[0:45000])

      valid_df = pd.DataFrame(train_labels_info[45000:])

      test_df = pd.DataFrame(test_csv_info)

      train_df.columns = ['filepath', 'class']

      valid_df.columns = ['filepath', 'class']

      test_df.columns = ['filepath', 'class']

      print(train_df.head())

      print(valid_df.head())

      print(test_df.head())

      # 五,使用ImageDataGenerator加载数据并做数据增强

      height = 32

      width = 32

      channels = 3

      batch_size = 32

      num_classes = 10

      train_datagen = keras.preprocessing.image.ImageDataGenerator(

      rescale = 1./255,

      rotation_range = 40,

      width_shift_range = 0.2,

      height_shift_range = 0.2,

      shear_range = 0.2,

      zoom_range = 0.2,

      horizontal_flip = True,

      fill_mode = 'nearest',

      )

      train_generator = train_datagen.flow_from_dataframe(

      train_df,

      directory = './',

      x_col = 'filepath',

      y_col = 'class',

      classes = class_names,

      target_size = (height, width),

      batch_size = batch_size,

      seed = 7,

      shuffle = True,

      class_mode = 'sparse',

      )枣庄妇科医院 http://mobile.zzdffkyy.com/

      valid_datagen = keras.preprocessing.image.ImageDataGenerator(

      rescale = 1./255)

      valid_generator = valid_datagen.flow_from_dataframe(

      valid_df,

      directory = './',

      x_col = 'filepath',

      y_col = 'class',

      classes = class_names,

      target_size = (height, width),

      batch_size = batch_size,

      seed = 7,

      shuffle = False,

      class_mode = "sparse")

      train_num = train_generator.samples

      valid_num = valid_generator.samples

      print(train_num, valid_num)

      # 六,查看generator数据

      for i in range(2):

      x, y = train_generator.next()

      print(x.shape, y.shape)

      print(y)

      # 七,构建模型

      model = keras.models.Sequential([

      keras.layers.Conv2D(filters=128, kernel_size=3, padding='same',

      activation='relu',

      input_shape=[width, height, channels]),

      keras.layers.BatchNormalization(),

      keras.layers.Conv2D(filters=128, kernel_size=3, padding='same',

      activation='relu'),

      keras.layers.BatchNormalization(),

      keras.layers.MaxPool2D(pool_size=2),

      keras.layers.Conv2D(filters=256, kernel_size=3, padding='same',

      activation='relu'),

      keras.layers.BatchNormalization(),

      keras.layers.Conv2D(filters=256, kernel_size=3, padding='same',

      activation='relu'),

      keras.layers.BatchNormalization(),

      keras.layers.MaxPool2D(pool_size=2),

      keras.layers.Conv2D(filters=512, kernel_size=3, padding='same',

      activation='relu'),

      keras.layers.BatchNormalization(),

      keras.layers.Conv2D(filters=512, kernel_size=3, padding='same',

      activation='relu'),

      keras.layers.BatchNormalization(),

      keras.layers.MaxPool2D(pool_size=2),

      keras.layers.Flatten(),

      keras.layers.Dense(512, activation='relu'),

      keras.layers.Dense(num_classes, activation='softmax'),

      ])

      model.compile(loss="sparse_categorical_crossentropy",

      optimizer="adam", metrics=['accuracy'])

      model.summary()

      # 八,训练模型

      epochs = 20

      history = model.fit_generator(train_generator,

      steps_per_epoch = train_num // batch_size,

      epochs = epochs,

      validation_data = valid_generator,

      validation_steps = valid_num // batch_size)

      # 九,打印模型训练曲线

      def plot_learning_curves(history, label, epcohs, min_value, max_value):

      data = {}

      data[label] = history.history[label]

      data['val_'+label] = history.history['val_'+label]

      pd.DataFrame(data).plot(figsize=(8, 5))

      plt.grid(True)

      plt.axis([0, epochs, min_value, max_value])

      plt.show()

      plot_learning_curves(history, 'accuracy', epochs, 0, 1)

      plot_learning_curves(history, 'loss', epochs, 0, 2)

      # 十,使用keras.ImageDataGenerator加载测试集数据

      test_datagen = keras.preprocessing.image.ImageDataGenerator(

      rescale = 1./255)

      test_generator = valid_datagen.flow_from_dataframe(

      test_df,

      directory = './',

      x_col = 'filepath',

      y_col = 'class',

      classes = class_names,

      target_size = (height, width),

      batch_size = batch_size,

      seed = 7,

      shuffle = False,

      class_mode = "sparse")

      test_num = test_generator.samples

      print(test_num)

      # 十一,使用测试集预测模型结果

      test_predict = model.predict_generator(test_generator,

      workers = 10,

      use_multiprocessing = True)

      # 1,测试集预测模型结果维度形状

      print(test_predict.shape)

      # 2,抽取前5条数据查看

      print(test_predict[0:5])

      # 3,取结果数值为最大的为预测结果

      test_predict_class_indices = np.argmax(test_predict, axis = 1)

      # 4,取前5条结果查看

      print(test_predict_class_indices[0:5])

      # 5,将结果转化为特征名称

      test_predict_class = [class_names[index]

      for index in test_predict_class_indices]

      # 查看前五条结果

      print(test_predict_class[0:5])

      # 十二,将预测结果写入到submission.csv文件中,并在kaggle上提交

      def generate_submissions(filename, predict_class):

      with open(filename, 'w') as f:

      f.write('id,label ')

      for i in range(len(predict_class)):

      f.write('%d,%s ' % (i+1, predict_class[i]))

      output_file = "./cifar10/submission.csv"

      generate_submissions(output_file, test_predict_class)

  • 相关阅读:
    转载(SQL Server 存储过程的分页)
    学会了怎么样利用捕获异常提示数据库主键重复错误
    遇到.net加了验证控件的表单无法提交的问题
    过劳死IT界杀手 [注:该文属于转载,非原创],好可怕啊!
    很喜欢的一些道理。
    学会了在DropDownList的项里加多个空格
    好东东:asp.net利用多线程执行长时间的任务,客户端显示出任务的执行进度的示例
    javascript判断字符长度最好的方法
    layui中使用layverify进行非必填整数校验
    SuppressWarnings抑制警告的关键字
  • 原文地址:https://www.cnblogs.com/djw12333/p/14469220.html
Copyright © 2011-2022 走看看