zoukankan      html  css  js  c++  java
  • 基本术语

    要进行机器学习,先要有数据记录
    这组记录的集合称为一个"数据集“

    每条记录是关于一个事件或对象的描述  称为"示例" (instance) 或"样本" (samp1e).  (色泽=浅自;根蒂t硬挺;敲声=清脆)

    反映事件或对象在某方面的表现或性质的事项(例如"色泽""根蒂" "敲声") 称为 属性 或"特征" (feature); 属性值(乌黑)

    属性张成的空间称为"属性空间" (attribute space) 、"样本空间" (samp1e space)或"输入空间"

    从数据中学得模型的过程称为"学习" (le缸ning)或"训练" (training)

    训练过程中使用的数据称为"训练数据" (training data) ,其中每个样本称为一个训练样本" (training samp1e),

    训练样本组成的集合称为"训练集" (training set). 

    例如"好瓜",称为"标
    记" (labe1); 拥有了标记信息的示例,则称为"样例" (examp1e).

    例如"好瓜" "坏瓜",此类学习任务称为
    "分类" (classification); 若欲预测的是连续值?例如西瓜成熟度0.95 、0.37 ,
    此类学习任务称为"回归" (regression).

    学得模型后,使用其进行预测的过程称为"测试" (testing) ,被预测的样本
    称为测试样本" (testing sample). 

    根据训练数据是否拥有标记信息,学习任务可大致划分为两大类"监督学习"和学习" (supervised learning) 和"无监督学习" (unsupervised learning) ,分类和回归是前者的代表,而聚类则是后者的代表.

  • 相关阅读:
    Eclipse中项目去除Js验证
    Web安全扫描工具
    Oracle-定时任务
    About_Return
    About_php_封装函数
    About_PHP_函数
    About_PHP_验证码的生成
    About_PHP_文件的上传
    About_MySQL Select--来自copy_03
    About_AJAX_03
  • 原文地址:https://www.cnblogs.com/dll102/p/12841301.html
Copyright © 2011-2022 走看看