zoukankan      html  css  js  c++  java
  • 1058

    1058 - Parallelogram Counting

    There are n distinct points in the plane, given by their integer coordinates. Find the number of parallelograms whose vertices lie on these points. In other words, find the number of 4-element subsets of these points that can be written as {A, B, C, D} such that AB || CD, and BC || AD. No four points are in a straight line.

    Input

    Input starts with an integer T (≤ 15), denoting the number of test cases.

    The first line of each test case contains an integer n (1 ≤ n ≤ 1000). Each of the next n lines, contains 2 space-separated integers x and y (the coordinates of a point) with magnitude (absolute value) of no more than 1000000000.

    Output

    For each case, print the case number and the number of parallelograms that can be formed.

    Sample Input

    Output for Sample Input

    2

    6

    0 0

    2 0

    4 0

    1 1

    3 1

    5 1

    7

    -2 -1

    8 9

    5 7

    1 1

    4 8

    2 0

    9 8

    Case 1: 5

    Case 2: 6

    分析:学了这么多年数学,然而只知道平行四边形对角线交于一点,却没想到只要存在两点的中点与另两点的中点相同,就能构成平行四边形。

    代码:

    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<iostream>
    #include<algorithm>
    #include<queue>
    #include<stack>
    using namespace std;
    #define N 510000

    struct node
    {
    int x;
    int y;
    }arr[N], mid[N];
    bool cmp(struct node a, struct node b)
    {
    if(a.x != b.x)
    return a.x < b.x;
    return a.y < b.y;
    }
    int main(void)
    {
    int T, cas, n;

    scanf("%d", &T);
    cas = 0;

    while(T--)
    {
    cas++;
    memset(mid, 0, sizeof(mid));

    scanf("%d", &n);

    for(int i = 0; i < n; i++)
    {
    scanf("%d%d", &arr[i].x, &arr[i].y);
    }
    int num = 0;

    for(int i = 0; i < n-1; i++)
    {
    for(int j = i+1; j < n; j++)
    {
    mid[num].x = arr[i].x + arr[j].x;
    mid[num].y = arr[i].y + arr[j].y;
    num++;
    }
    }
    sort(mid, mid+num, cmp);/// 排序是为了方便下面比较
    int cnt = 1;
    int ans = 0;
    int flag = 0;

    for(int i = 1; i < num; i++)
    {
    if(mid[i].x == mid[flag].x && mid[i].y == mid[flag].y)
    {
    cnt++;
    }
    else
    {
    ans += cnt * (cnt - 1) / 2;///计算就是组合数:从 n个数里面取出 2个数 ,就是 C(n,2)
    cnt = 1;
    flag = i;
    }
    }
    if(cnt>1)
    ans += (cnt - 1) * cnt / 2; /// 判断循环的最后一组数据,如果也存在相同的点,就加上
    printf("Case %d: %d ", cas, ans);
    }
    return 0;
    }

  • 相关阅读:
    使用docker搭建gitlab版本控制系统
    Spring Boot与Docker部署
    CentOS7 使用yum命令安装Java SDK(openjdk)
    配置带用户权限的docker registry v2
    Docker搭建带有访问认证的私有仓库
    CentOS7 关闭防火墙
    CentOS7.2网络配置
    Docker Machine 简介
    docker的常用命令汇总
    实时查看docker容器日志
  • 原文地址:https://www.cnblogs.com/dll6/p/7168832.html
Copyright © 2011-2022 走看看