zoukankan      html  css  js  c++  java
  • 1058

    1058 - Parallelogram Counting

    There are n distinct points in the plane, given by their integer coordinates. Find the number of parallelograms whose vertices lie on these points. In other words, find the number of 4-element subsets of these points that can be written as {A, B, C, D} such that AB || CD, and BC || AD. No four points are in a straight line.

    Input

    Input starts with an integer T (≤ 15), denoting the number of test cases.

    The first line of each test case contains an integer n (1 ≤ n ≤ 1000). Each of the next n lines, contains 2 space-separated integers x and y (the coordinates of a point) with magnitude (absolute value) of no more than 1000000000.

    Output

    For each case, print the case number and the number of parallelograms that can be formed.

    Sample Input

    Output for Sample Input

    2

    6

    0 0

    2 0

    4 0

    1 1

    3 1

    5 1

    7

    -2 -1

    8 9

    5 7

    1 1

    4 8

    2 0

    9 8

    Case 1: 5

    Case 2: 6

    分析:学了这么多年数学,然而只知道平行四边形对角线交于一点,却没想到只要存在两点的中点与另两点的中点相同,就能构成平行四边形。

    代码:

    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<iostream>
    #include<algorithm>
    #include<queue>
    #include<stack>
    using namespace std;
    #define N 510000

    struct node
    {
    int x;
    int y;
    }arr[N], mid[N];
    bool cmp(struct node a, struct node b)
    {
    if(a.x != b.x)
    return a.x < b.x;
    return a.y < b.y;
    }
    int main(void)
    {
    int T, cas, n;

    scanf("%d", &T);
    cas = 0;

    while(T--)
    {
    cas++;
    memset(mid, 0, sizeof(mid));

    scanf("%d", &n);

    for(int i = 0; i < n; i++)
    {
    scanf("%d%d", &arr[i].x, &arr[i].y);
    }
    int num = 0;

    for(int i = 0; i < n-1; i++)
    {
    for(int j = i+1; j < n; j++)
    {
    mid[num].x = arr[i].x + arr[j].x;
    mid[num].y = arr[i].y + arr[j].y;
    num++;
    }
    }
    sort(mid, mid+num, cmp);/// 排序是为了方便下面比较
    int cnt = 1;
    int ans = 0;
    int flag = 0;

    for(int i = 1; i < num; i++)
    {
    if(mid[i].x == mid[flag].x && mid[i].y == mid[flag].y)
    {
    cnt++;
    }
    else
    {
    ans += cnt * (cnt - 1) / 2;///计算就是组合数:从 n个数里面取出 2个数 ,就是 C(n,2)
    cnt = 1;
    flag = i;
    }
    }
    if(cnt>1)
    ans += (cnt - 1) * cnt / 2; /// 判断循环的最后一组数据,如果也存在相同的点,就加上
    printf("Case %d: %d ", cas, ans);
    }
    return 0;
    }

  • 相关阅读:
    东芝线阵CCD芯片TCD1305DG驱动时序设计
    数字电路中应避免产生不必要的锁存器 Latch
    准双向口、开漏输出、推挽输出结构介绍
    边沿检测电路小结
    数字系统中的亚稳态及其解决办法
    launch edge 和 latch edge 延迟
    基于Verilog的偶数、奇数、半整数分频以及任意分频器设计
    找到了救命的东西 NVIDIA MPS (multi-process service)
    关于多个程序同时launch kernels on the same GPU
    java的System.currentTimeMillis()和System.nanoTime()
  • 原文地址:https://www.cnblogs.com/dll6/p/7168832.html
Copyright © 2011-2022 走看看