zoukankan      html  css  js  c++  java
  • light oj 1045

    1045 - Digits of Factorial

    Factorial of an integer is defined by the following function

    f(0) = 1

    f(n) = f(n - 1) * n, if(n > 0)

    So, factorial of 5 is 120. But in different bases, the factorial may be different. For example, factorial of 5 in base 8 is 170.

    In this problem, you have to find the number of digit(s) of the factorial of an integer in a certain base.

    Input

    Input starts with an integer T (≤ 50000), denoting the number of test cases.

    Each case begins with two integers n (0 ≤ n ≤ 106) and base (2 ≤ base ≤ 1000). Both of these integers will be given in decimal.

    Output

    For each case of input you have to print the case number and the digit(s) of factorial n in the given base.

    Sample Input

    Output for Sample Input

    5

    5 10

    8 10

    22 3

    1000000 2

    0 100

    Case 1: 3

    Case 2: 5

    Case 3: 45

    Case 4: 18488885

    Case 5: 1

    分析:换底公式log a b = log c b / log c a; 所以logk(fn) = log10(fn)/ log10k;    logq0(fn) = log10(N) = log10(1 * 2 *...*n) = log10(1) + 1og10(2) .....+ 1og10(n)

    代码:


    #include<iostream>

    #include<cstdio>

    #include<cmath>

    #include<cstring>

    #include<algorithm>

    #define N 1000009

    using namespace std;

    double a[N];

    void init()

    {

        a[0] = log10(1);

        for(int i = 1; i <= N; i++)

            a[i] = a[i-1] + log10(i*1.0);

    }

    int main(void)

    {

        int T, cas;

        int n, k;

        init();

        scanf("%d", &T);

        cas = 0;

        while(T--)

        {

            cas++;

            scanf("%d%d", &n, &k);

            if(n == 0)

             printf("Case %d: 1 ", cas);

            else

            {

                double ans = ceil(a[n]/log10(k*1.0));

                printf("Case %d: %d ", cas, (int)ans);

            }

        }

  • 相关阅读:
    ArrayList.sort & Collections.sort
    preliminary->advanced exam coding part
    Spring JDBC的使用
    Spring之面向切面编程(AOP)
    Spring静态代理与动态代理
    Spring之JDBC的连接与注解的使用
    Spring入门之Bean的实例化方式
    Mybatis入门(二)
    Mybatis入门(一)
    正则表达式——转载
  • 原文地址:https://www.cnblogs.com/dll6/p/7266815.html
Copyright © 2011-2022 走看看