zoukankan      html  css  js  c++  java
  • 1336

    1336 - Sigma Function

    Sigma function is an interesting function in Number Theory. It is denoted by the Greek letter Sigma (σ). This function actually denotes the sum of all divisors of a number. For example σ(24) = 1+2+3+4+6+8+12+24=60. Sigma of small numbers is easy to find but for large numbers it is very difficult to find in a straight forward way. But mathematicians have discovered a formula to find sigma. If the prime power decomposition of an integer is

    Then we can write,

    For some n the value of σ(n) is odd and for others it is even. Given a value n, you will have to find how many integers from 1 to n have even value of σ.

    Input

    Input starts with an integer T (≤ 100), denoting the number of test cases.

    Each case starts with a line containing an integer n (1 ≤ n ≤ 1012).

    Output

    For each case, print the case number and the result.

    分析:

    对于任意一个x, 都有x = p1^a1*p2^a2*...*pn^an;所以x的所有因子和f(x) = ( 1 + p1 + p1^2+ ...p1^a1)(1 + p2 + p2 ^ 2 + ...p2^a2)...(1 + pn + pn^2 +...pn^an).
    偶数和偶数乘积为偶,偶和奇的乘积为偶,只有奇和奇的乘积为奇,所以我们求出和为奇的然后减去就是偶的了。
    1x只有素因子2时 加上1一定为奇。
    2偶数个奇数相加为偶,只有素因子2为偶数,加上1 为奇数,所以ai需为偶数,所以完全平方数x^2的每一个p^a(a一定会是偶数,因为是两个x相乘,所以就是两个a相加,不管是奇数加奇数,还是偶数加偶数都会是偶数)
    3x^2因子和是偶数了,那么2*x^2的因子和也一定是偶数。因为就算再多一个2也没关系,最后还是会加上一个1还是奇数。
    所以最后只用减去2^x,x^2和2*x^2,x^2和2*x^2又包含2^x,所用只用减去x^2和2*x^2.
    代码:

    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<iostream>
    #include<algorithm>
    #include<queue>
    #include<stack>

    using namespace std;
    typedef long long ll;
    const int maxn = 1e7+5;
    const int mod = 1000;

    int quickmi(int a, int b)
    {
    if(b == 0)
    return 1;

    int tmp = quickmi(a, b>>1);

    tmp = tmp * tmp % mod;

    if(b & 1)
    tmp = tmp * (a % mod) % mod;

    return tmp % mod;

    }
    int main(void)
    {
    int T, cas;
    ll n;

    scanf("%d", &T);

    cas = 0;

    while(T--)
    {
    cas++;

    scanf("%lld", &n);

    ll sum;

    sum = n;
    sum -= (int)sqrt(n);
    sum -= (int)sqrt(n/2);


    printf("Case %d: %lld ", cas, sum);

    }

    return 0;
    }

  • 相关阅读:
    你的DNN站点慢了么?
    SQL锁的应用与描述之二
    自动完成输入框错位
    网页插入flash代码以及技巧
    使用T_SQL脚本创建SQLServer2000后台计划作业任务
    SQL Server实用经典例句之二
    中缀表达式转后缀表达式
    spring cloud config server SSH配置 git private key方式
    vim 技巧一
    jquery 监控文本框键盘事件(回车事件),附常用keycode值。
  • 原文地址:https://www.cnblogs.com/dll6/p/7700304.html
Copyright © 2011-2022 走看看