zoukankan      html  css  js  c++  java
  • Java设计模式(Design Patterns)——可复用面向对象软件的基础

    设计模式(Design Patterns)

    设计模式(Design pattern)是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。

    使用设计模式是为了可重用代码、让代码更容易被他人理解、保证代码可靠性。

    毫无疑问,设计模式于己于他人于系统都是多赢的,设计模式使代码编制真正工程化,设计模式是软件工程的基石,如同大厦的一块块砖石一样。

    项目中合理的运用设计模式可以完美的解决很多问题,每种模式在现在中都有相应的原理来与之对应,每一个模式描述了一个在我们周围不断重复发生的问题,以及该问题的核心解决方案,这也是它能被广泛应用的原因。

    一、设计模式的分类

    总体来说设计模式分为三大类:

    创建型模式,共五种:工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式。

    结构型模式,共七种:适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。

    行为型模式,共十一种:策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。

    还有两类:并发型模式线程池模式

    二、设计模式的六大原则

    1、开闭原则(Open Close Principle)

    开闭原则就是说对扩展开放,对修改关闭。在程序需要进行拓展的时候,不能去修改原有的代码,实现一个热插拔的效果。所以一句话概括就是:为了使程序的扩展性好,易于维护和升级。想要达到这样的效果,我们需要使用接口和抽象类,后面的具体设计中我们会提到这点。

    2、里氏代换原则(Liskov Substitution Principle)

    里氏代换原则(Liskov Substitution Principle LSP)面向对象设计的基本原则之一。 里氏代换原则中说,任何基类可以出现的地方,子类一定可以出现。 LSP是继承复用的基石,只有当衍生类可以替换掉基类,软件单位的功能不受到影响时,基类才能真正被复用,而衍生类也能够在基类的基础上增加新的行为。里氏代换原则是对“开-闭”原则的补充。实现“开-闭”原则的关键步骤就是抽象化。而基类与子类的继承关系就是抽象化的具体实现,所以里氏代换原则是对实现抽象化的具体步骤的规范。—— From Baidu 百科

    3、依赖倒转原则(Dependence Inversion Principle)

    这个是开闭原则的基础,具体内容:针对接口编程,依赖于抽象而不依赖于具体

    4、接口隔离原则(Interface Segregation Principle)

    这个原则的意思是:使用多个隔离的接口,比使用单个接口要好。还是一个降低类之间的耦合度的意思,从这儿我们看出,其实设计模式就是一个软件的设计思想,从大型软件架构出发,为了升级和维护方便。所以上文中多次出现:降低依赖,降低耦合。

    5、迪米特法则(最少知道原则)(Demeter Principle)

    为什么叫最少知道原则,就是说:一个实体应当尽量少的与其他实体之间发生相互作用,使得系统功能模块相对独立。

    6、合成复用原则(Composite Reuse Principle)

    原则是尽量使用合成/聚合的方式,而不是使用继承

    三、Java的23中设计模式

    详细介绍Java中23种设计模式的概念,应用场景等情况,并结合他们的特点及设计模式的原则进行分析,具体参考下文:

    http://zz563143188.iteye.com/blog/1847029


     

    这里只写介绍单例设计模式。

    3、单例模式(Singleton

    单例对象(Singleton)是一种常用的设计模式。

    在Java应用中,单例对象能保证在一个JVM中,该对象只有一个实例存在

    这样的模式有几个好处:

    1、某些类创建比较频繁,对于一些大型的对象,这是一笔很大的系统开销。

    2、省去了new操作符,降低了系统内存的使用频率,减轻GC压力。

    3、有些类如交易所的核心交易引擎,控制着交易流程,如果该类可以创建多个的话,系统完全乱了。(比如一个军队出现了多个司令员同时指挥,肯定会乱成一团),所以只有使用单例模式,才能保证核心交易服务器独立控制整个流程。

    【几个要点】:

    • 私有 静态实例
    • 私有 构造方法
    • get实例new类分开
    • new类进行单线程锁

    先给出一个我心目中比较完美的例子:

    【方案A】

    public class Singleton {  
      
        /* 持有私有静态实例,防止被引用,此处赋值为null,目的是实现延迟加载 */  
        private static Singleton instance = null;  
      
        /* 私有构造方法,防止被实例化 */  
        private Singleton() {  
        }  
      
        /* 使用内部类并在创建实例时加单线程锁 */  
        private static synchronized void syncInit() {  
            if (instance == null) {  
                instance = new SingletonTest();  
            }  
        }  
      
        /* 静态工程方法,获取实例 */ 
        public static SingletonTest getInstance() {  
            if (instance == null) {  
                syncInit();  
            }  
            return instance;  
        }    
     
    } 

    2018-3-11 19:03:56 upate:

    又看了一篇文写到:静态内部类方式是单例模式最好的实现方式。

    原因如下:由于内部类在编译完成后也是一个单独的class文件,因此在不使用的情况下Inner类是不会被加载的。同时,JVM保证在类加载的过程中static代码块在多线程或者单线程下都正确执行,且仅执行一次。解决了延迟加载以及线程安全的问题。

    看例子:

    【方案B】

    public class Singleton{
        private Singleton(){}
        private static class Inner{
            private static Singleton instanceHolder=new Singleton();
        }
        public static Singleton getInstacen(){
            return Inner.instanceHolder;
        }
    }

    下面所有的文字都是为了解释【方案A】这个“完美”的单例模式Sample代码是怎么得到的。不看也行,把上面的例子理解透记住即可

    首先我们写一个简单的单例类:

    public class Singleton {  
      
        /* 持有私有静态实例,防止被引用,此处赋值为null,目的是实现延迟加载 */  
        private static Singleton instance = null;  
      
        /* 私有构造方法,防止被实例化 */  
        private Singleton() {  
        }  
      
        /* 静态工程方法,创建实例 */  
        public static Singleton getInstance() {  
            if (instance == null) {  
                instance = new Singleton();  
            }  
            return instance;  
        }  
      
        /* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */  
        public Object readResolve() {  
            return instance;  
        }  
    } 

    这个类可以满足基本要求,但是,像这样毫无线程安全保护的类,如果我们把它放入多线程的环境下,肯定就会出现问题了,如何解决?我们首先会想到对getInstance方法加synchronized关键字,如下:

    synchronized —— 当它用来修饰一个方法或者一个代码块的时候,能够保证在同一时刻最多只有一个线程执行该段代码。

    public static synchronized Singleton getInstance() {  
            if (instance == null) {  
                instance = new Singleton();  
            }  
            return instance;  
        } 

    但是,synchronized关键字锁住的是这个对象,这样的用法,在性能上会有所下降,因为每次调用getInstance(),都要对对象上锁,事实上,只有在第一次创建对象的时候需要加锁,之后就不需要了,所以,这个地方需要改进。我们改成下面这个:

        public static Singleton getInstance() {  
                if (instance == null) {  
                    synchronized (instance) {  
                        if (instance == null) {  
                            instance = new Singleton();  
                        }  
                    }  
                }  
                return instance;  
            }  

    似乎解决了之前提到的问题,将synchronized关键字加在了内部,也就是说当调用的时候是不需要加锁的,只有在instance为null,并创建对象的时候才需要加锁,性能有一定的提升。但是,这样的情况,还是有可能有问题的,看下面的情况:在Java指令中创建对象和赋值操作是分开进行的,也就是说instance = new Singleton();语句是分两步执行的。但是JVM并不保证这两个操作的先后顺序,也就是说有可能JVM会为新的Singleton实例分配空间,然后直接赋值给instance成员,然后再去初始化这个Singleton实例。这样就可能出错了,我们以A、B两个线程为例:

    a>A、B线程同时进入了第一个if判断

    b>A首先进入synchronized块,由于instance为null,所以它执行instance = new Singleton();

    c>由于JVM内部的优化机制,JVM先画出了一些分配给Singleton实例的空白内存,并赋值给instance成员(注意此时JVM没有开始初始化这个实例),然后A离开了synchronized块。

    d>B进入synchronized块,由于instance此时不是null,因此它马上离开了synchronized块并将结果返回给调用该方法的程序。

    e>此时B线程打算使用Singleton实例,却发现它没有被初始化,于是错误发生了。

    所以程序还是有可能发生错误,其实程序在运行过程是很复杂的,从这点我们就可以看出,尤其是在写多线程环境下的程序更有难度,有挑战性。我们对该程序做进一步优化:

    private static class SingletonFactory{           
            private static Singleton instance = new Singleton();           
        }           
        public static Singleton getInstance(){           
            return SingletonFactory.instance;           
        } 

    实际情况是,单例模式使用内部类来维护单例的实现,JVM内部的机制能够保证当一个类被加载的时候,这个类的加载过程是线程互斥的。这样当我们第一次调用getInstance的时候,JVM能够帮我们保证instance只被创建一次,并且会保证把赋值给instance的内存初始化完毕,这样我们就不用担心上面的问题。同时该方法也只会在第一次调用的时候使用互斥机制,这样就解决了低性能问题。这样我们暂时总结一个完美的单例模式:

    public class Singleton {  
      
        /* 私有构造方法,防止被实例化 */  
        private Singleton() {  
        }  
      
        /* 此处使用一个内部类来维护单例 */  
        private static class SingletonFactory {  
            private static Singleton instance = new Singleton();  
        }  
      
        /* 获取实例 */  
        public static Singleton getInstance() {  
            return SingletonFactory.instance;  
        }  
      
        /* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */  
        public Object readResolve() {  
            return getInstance();  
        }  
    } 

    其实说它完美,也不一定,如果在构造函数中抛出异常,实例将永远得不到创建,也会出错。所以说,十分完美的东西是没有的,我们只能根据实际情况,选择最适合自己应用场景的实现方法。

    我更喜欢这个实现方式:

    也有人这样实现:因为我们只需要在创建类的时候进行同步,所以只要将创建和getInstance()分开,单独为创建加synchronized关键字,也是可以的:

    public class SingletonTest {  
      
        private static SingletonTest instance = null;  
      
        private SingletonTest() {  
        }  
      
        private static synchronized void syncInit() {  
            if (instance == null) {  
                instance = new SingletonTest();  
            }  
        }  
      
        public static SingletonTest getInstance() {  
            if (instance == null) {  
                syncInit();  
            }  
            return instance;  
        }  
    } 

    通过单例模式的学习告诉我们:

    1、单例模式理解起来简单,但是具体实现起来还是有一定的难度。

    2、synchronized关键字锁定的是对象,在用的时候,一定要在恰当的地方使用(注意需要使用锁的对象和过程,可能有的时候并不是整个对象及整个过程都需要锁)。

    到这儿,单例模式基本已经讲完了,结尾处,笔者突然想到另一个问题,就是采用类的静态方法,实现单例模式的效果,也是可行的,此处二者有什么不同?

    首先,静态类不能实现接口。(从类的角度说是可以的,但是那样就破坏了静态了。因为接口中不允许有static修饰的方法,所以即使实现了也是非静态的)

    其次,单例可以被延迟初始化,静态类一般在第一次加载是初始化。之所以延迟加载,是因为有些类比较庞大,所以延迟加载有助于提升性能。

    再次,单例类可以被继承,他的方法可以被覆写。但是静态类内部方法都是static,无法被覆写。

    最后一点,单例类比较灵活,毕竟从实现上只是一个普通的Java类,只要满足单例的基本需求,你可以在里面随心所欲的实现一些其它功能,但是静态类不行。从上面这些概括中,基本可以看出二者的区别,但是,从另一方面讲,我们上面最后实现的那个单例模式,内部就是用一个静态类来实现的,所以,二者有很大的关联,只是我们考虑问题的层面不同罢了。两种思想的结合,才能造就出完美的解决方案,就像HashMap采用数组+链表来实现一样,其实生活中很多事情都是这样,单用不同的方法来处理问题,总是有优点也有缺点,最完美的方法是,结合各个方法的优点,才能最好的解决问题!

     

     

  • 相关阅读:
    第十周作业--阅读(五一)
    第九周作业
    第八周作业
    第七周作业
    第六周作业
    模板
    第五周作业
    第四周作业
    第三周作业
    文件
  • 原文地址:https://www.cnblogs.com/dlsunf/p/8544934.html
Copyright © 2011-2022 走看看