zoukankan      html  css  js  c++  java
  • 基于图像的大规模三维重建

    更完全的空间信息、完全真实的视角、3D打印机的打印模型来源

    数字博物馆、虚拟现实、电影产业、地图和导航 altizure
    100到1000000张图,10M到100M像素,无序图像,与SLAM不同的是,需要处理无关的图像

    问题:

    • 奇异性问题
    • 规模问题,多机器合作
    • 冗余图片
    • 图片质量不同

    两大步

    运动恢复结构sfm:

    • SIFT>Harris Conner
    • LIFT,迁移数据集泛化能力弱
    • 自己提出 GeoDesc,专门用于三维重建,基于L2-Net,预处理出每张图片固定相关的图片,深度神经网络实现检索,代替词袋模型。基于图的匹配解决奇异性问题。
    • 以最小生成树进行初始化,通过强三角对进行扩展,基于交流的图强化。最终得到完整的相机连接。
    • Camera Registration:相机连接后,图虽然连接了,但顺序仍然未知,传统方法(2006):找共视点最多的图像作为下一帧;先选出最小相机集再往集合上加图片(2008);分布式系统加图片(2011)。以上都是递增式registration。  近年来使用全局方法,构造优化函数。将旋转和平移分开进行优化。优点在于可以进行闭环矫正,局部优化速度快。缺点对于outliers敏感。
    • 分布式BA算法,参考ADMM
  • 相关阅读:
    hdu 4612 Warm up 桥缩点
    树上的一个题目
    2013 ACM/ICPC Asia Regional Online —— Warmup2
    hdu 3308 LCIS 线段树
    最近计划
    hdu 2121 , hdu 4009 无定根最小树形图
    POJ 3164 Command Network 最小树形图模板
    过滤器和拦截器
    struts中的请求数据自动封装
    struts中获取域
  • 原文地址:https://www.cnblogs.com/dlutjwh/p/11688493.html
Copyright © 2011-2022 走看看