zoukankan      html  css  js  c++  java
  • Kruskal最小生成树算法

      1. 将所有的边按照权重非递减排序;
      2. 选择最小权重的边,判断是否其在当前的生成树中形成了一个环路。如果环路没有形成,则将该边加入树中,否则放弃。
      3. 重复步骤 2,直到有 V – 1 条边在生成树中。
    1. http://blog.jobbole.com/83939/
    2. using System;
      using System.Collections.Generic;
      using System.Linq;
       
      namespace GraphAlgorithmTesting
      {
        class Program
        {
          static void Main(string[] args)
          {
            Graph g = new Graph(9);
            g.AddEdge(0, 1, 4);
            g.AddEdge(0, 7, 8);
            g.AddEdge(1, 2, 8);
            g.AddEdge(1, 7, 11);
            g.AddEdge(2, 3, 7);
            g.AddEdge(2, 5, 4);
            g.AddEdge(8, 2, 2);
            g.AddEdge(3, 4, 9);
            g.AddEdge(3, 5, 14);
            g.AddEdge(5, 4, 10);
            g.AddEdge(6, 5, 2);
            g.AddEdge(8, 6, 6);
            g.AddEdge(7, 6, 1);
            g.AddEdge(7, 8, 7);
       
            Console.WriteLine();
            Console.WriteLine("Graph Vertex Count : {0}", g.VertexCount);
            Console.WriteLine("Graph Edge Count : {0}", g.EdgeCount);
            Console.WriteLine();
       
            Console.WriteLine("Is there cycle in graph: {0}", g.HasCycle());
            Console.WriteLine();
       
            Edge[] mst = g.Kruskal();
            Console.WriteLine("MST Edges:");
            foreach (var edge in mst)
            {
              Console.WriteLine("	{0}", edge);
            }
       
            Console.ReadKey();
          }
       
          class Edge
          {
            public Edge(int begin, int end, int weight)
            {
              this.Begin = begin;
              this.End = end;
              this.Weight = weight;
            }
       
            public int Begin { get; private set; }
            public int End { get; private set; }
            public int Weight { get; private set; }
       
            public override string ToString()
            {
              return string.Format(
                "Begin[{0}], End[{1}], Weight[{2}]",
                Begin, End, Weight);
            }
          }
       
          class Subset
          {
            public int Parent { get; set; }
            public int Rank { get; set; }
          }
       
          class Graph
          {
            private Dictionary<int, List<Edge>> _adjacentEdges
              = new Dictionary<int, List<Edge>>();
       
            public Graph(int vertexCount)
            {
              this.VertexCount = vertexCount;
            }
       
            public int VertexCount { get; private set; }
       
            public IEnumerable<int> Vertices { get { return _adjacentEdges.Keys; } }
       
            public IEnumerable<Edge> Edges
            {
              get { return _adjacentEdges.Values.SelectMany(e => e); }
            }
       
            public int EdgeCount { get { return this.Edges.Count(); } }
       
            public void AddEdge(int begin, int end, int weight)
            {
              if (!_adjacentEdges.ContainsKey(begin))
              {
                var edges = new List<Edge>();
                _adjacentEdges.Add(begin, edges);
              }
       
              _adjacentEdges[begin].Add(new Edge(begin, end, weight));
            }
       
            private int Find(Subset[] subsets, int i)
            {
              // find root and make root as parent of i (path compression)
              if (subsets[i].Parent != i)
                subsets[i].Parent = Find(subsets, subsets[i].Parent);
       
              return subsets[i].Parent;
            }
       
            private void Union(Subset[] subsets, int x, int y)
            {
              int xroot = Find(subsets, x);
              int yroot = Find(subsets, y);
       
              // Attach smaller rank tree under root of high rank tree
              // (Union by Rank)
              if (subsets[xroot].Rank < subsets[yroot].Rank)
                subsets[xroot].Parent = yroot;
              else if (subsets[xroot].Rank > subsets[yroot].Rank)
                subsets[yroot].Parent = xroot;
       
              // If ranks are same, then make one as root and increment
              // its rank by one
              else
              {
                subsets[yroot].Parent = xroot;
                subsets[xroot].Rank++;
              }
            }
       
            public bool HasCycle()
            {
              Subset[] subsets = new Subset[VertexCount];
              for (int i = 0; i < subsets.Length; i++)
              {
                subsets[i] = new Subset();
                subsets[i].Parent = i;
                subsets[i].Rank = 0;
              }
       
              // Iterate through all edges of graph, find subset of both
              // vertices of every edge, if both subsets are same, 
              // then there is cycle in graph.
              foreach (var edge in this.Edges)
              {
                int x = Find(subsets, edge.Begin);
                int y = Find(subsets, edge.End);
       
                if (x == y)
                {
                  return true;
                }
       
                Union(subsets, x, y);
              }
       
              return false;
            }
       
            public Edge[] Kruskal()
            {
              // This will store the resultant MST
              Edge[] mst = new Edge[VertexCount - 1];
       
              // Step 1: Sort all the edges in non-decreasing order of their weight
              // If we are not allowed to change the given graph, we can create a copy of
              // array of edges
              var sortedEdges = this.Edges.OrderBy(t => t.Weight);
              var enumerator = sortedEdges.GetEnumerator();
       
              // Allocate memory for creating V ssubsets
              // Create V subsets with single elements
              Subset[] subsets = new Subset[VertexCount];
              for (int i = 0; i < subsets.Length; i++)
              {
                subsets[i] = new Subset();
                subsets[i].Parent = i;
                subsets[i].Rank = 0;
              }
       
              // Number of edges to be taken is equal to V-1
              int e = 0;
              while (e < VertexCount - 1)
              {
                // Step 2: Pick the smallest edge. And increment the index
                // for next iteration
                Edge nextEdge;
                if (enumerator.MoveNext())
                {
                  nextEdge = enumerator.Current;
       
                  int x = Find(subsets, nextEdge.Begin);
                  int y = Find(subsets, nextEdge.End);
       
                  // If including this edge does't cause cycle, include it
                  // in result and increment the index of result for next edge
                  if (x != y)
                  {
                    mst[e++] = nextEdge;
                    Union(subsets, x, y);
                  }
                  else
                  {
                    // Else discard the nextEdge
                  }
                }
              }
       
              return mst;
            }
          }
        }
      }
      

        

  • 相关阅读:
    (转)Dynamic Web project转成Maven项目
    (转)nodejs搭建本地http服务器
    jquery mobile validation
    Quartz任务调度快速入门(转)
    珠宝首饰
    免费素材:25套免费的 Web UI 设计的界面元素(转)
    WebUI框架
    超越大典汽车维修系统
    如何申请开通微信多客服功能
    微信开发者文档连接
  • 原文地址:https://www.cnblogs.com/dmdj/p/4271000.html
Copyright © 2011-2022 走看看