AStar 最坏情况(O(log_2560 ^ 4))
用(AStar)算法做了这题,程序跑了(408ms)。
相比于(IDA*)的(100ms)左右要慢上不少。
且(A*)由于是(bfs),代码长度也较长。
跑的慢的原因应该有两点:
- 用了三个(STL),
垃圾STL毁我青春 - 这题的指数暴涨,是(560),所以(log)反而比前几次叠加要大。
使用的估价函数是一样的,即:
(h(n) = lceilfrac{相邻位置不对的对数}{3} ceil)
估价函数详细的证明 & 解释见 y总的题解。
总结了一下应该在何时选择 (A*) 或 (IDA*):
- 需要最小字典序时,状态表示很大,指数增长较快时,使用(IDA*)
- 若状态容易表示,指数增长较慢时,使用(A*)(注意需要最小字典序时不能用(A*),因为他不是按照顺序搜索的)。
C++ 代码
#include <cstdio>
#include <iostream>
#include <unordered_set>
#include <queue>
using namespace std;
typedef unsigned long long ULL;
const int N = 15, B = 17;
int n;
struct State{
//v表示当前的状态,step表示步数,f表示当前估计值(答案)
int v[N], step, f;
//重载小于号
bool operator < (const State &x) const{
return f > x.f;
}
}Start;
//检测是否到了目标状态
bool check(State x){
for(int i = 0; i < n; i++)
if(x.v[i] != i + 1) return false;
return true;
}
//用于检测一个状态是否已经访问过了
unordered_set<ULL> s;
priority_queue<State> q;
//hash
ULL get(State x){
ULL res = 0;
for(int i = 0; i < n; i++)
res = res * B + x.v[i];
return res;
}
int f(State x){
int res = 0;
for(int i = 1; i < n; i++)
if(x.v[i] - 1 != x.v[i - 1]) res++;
return res % 3 ? res / 3 + 1 : res / 3;
}
int bfs(){
while(q.size()) q.pop();
Start.step = 0; Start.f = f(Start);
q.push(Start); s.insert(get(Start));
while(!q.empty()){
State u = q.top(); q.pop();
if(u.f >= 5) return 5;
if(check(u)) return u.step;
for(int l = 1; l < n; l++){
for(int i = 0; i + l - 1 < n; i++){
int j = i + l - 1;
for(int k = i + l; k < n; k++){
State v;
for(int f = 0; f < n; f++) v.v[f] = u.v[f];
for(int f = j + 1, t = i; f <= k; f++, t++)
v.v[t] = u.v[f];
for(int f = i, t = i + k - j; f <= j; f++, t++)
v.v[t] = u.v[f];
if(s.count(get(v)) > 0) continue;
s.insert(get(v));
v.step = u.step + 1;
v.f = v.step + f(v);
q.push(v);
}
}
}
}
return 5;
}
int main(){
int T; scanf("%d", &T);
while(T--){
s.clear();
scanf("%d", &n);
for(int i = 0; i < n; i++)
scanf("%d", &Start.v[i]);
int res = bfs();
if(res >= 5) puts("5 or more");
else printf("%d
", res);
}
return 0;
}