zoukankan      html  css  js  c++  java
  • 记一道有趣的数学题

    • 这题貌似是一个简单的博弈论?

    贪心的想,史密斯、布朗采用的最佳对策必然是“先对命中率高的那个人开枪”。为啥呢?很好想象,如果不命中,没有区分。如果命中,那么你留下的那个人就是命中率低的了,你的胜利概率此时要依赖于留下那个人射偏,因为到他的回合了。琼采取最优策略是如果剩下3个人不开枪,然后留枪到1v1的时候。因为那俩人如果留着肯定会自相残杀,琼不会有被杀的风险。

    然后概率也是符合乘法原理的,先将先后顺序分成 6 类,每类概率 (dfrac{1}{6}),事后乘起来就行。

    (Rightarrow)(Rightarrow)

    史获胜的概率即一发无伤搞死布朗 + 琼射偏:(dfrac{1}{2})

    布获胜的概率为 (0),一开始就被干死了(可怜兮兮)

    琼获胜的概率为 (dfrac{1}{2})

    (Rightarrow)(Rightarrow)

    史获胜的概率即一发无伤搞死布朗 + 琼射偏:(dfrac{1}{2})

    布获胜的概率为 (0),一开始就被干死了(可怜兮兮)

    琼获胜的概率为 (dfrac{1}{2})

    (Rightarrow)(Rightarrow)

    史获胜即布射偏,然后瞬秒布朗,之后琼射偏:(dfrac{1}{10})

    布获胜概率为搞死史密斯,之后和琼对垒获胜 (dfrac{16}{45})

    琼获胜的概率分为两部分之和(跟史对垒获胜或者和布对垒获胜)为 (dfrac{49}{90})

    (Rightarrow)(Rightarrow)

    史获胜即布射偏,然后琼也不帮忙开枪,然后史得保证琼第二次不把自己射死,两次瞬秒布朗、琼:(dfrac{1}{10})

    布获胜概率为搞死史密斯,之后和琼对垒获胜 (dfrac{16}{45})

    琼获胜的概率分为两部分之和(跟史对垒获胜或者和布对垒获胜)为 (dfrac{49}{90})

    (Rightarrow)(Rightarrow)

    这种情况琼为了最优策略,一定要放空枪。

    史获胜的概率即一发无伤搞死布朗 + 琼射偏:(dfrac{1}{2})

    布获胜的概率为 (0),一开始就被干死了(可怜兮兮)

    琼获胜的概率为 (dfrac{1}{2})

    (Rightarrow)(Rightarrow)

    这种情况琼为了最优策略,一定要放空枪。

    史获胜即布射偏,然后琼也不帮忙开枪,然后史得保证琼第二次不把自己射死,两次瞬秒布朗、琼:(dfrac{1}{10})

    布获胜概率为搞死史密斯,之后和琼对垒获胜 (dfrac{16}{45})

    琼获胜的概率分为两部分之和(跟史对垒获胜或者和布对垒获胜)为 (dfrac{49}{90})

    总结

    然后我们发现情况分为两组,每组中3个情况概率是一样的,所以:

    史获胜总概率:(dfrac{1}{2} imes dfrac{1}{2} + dfrac{1}{2} imes dfrac{1}{10} = dfrac{3}{10})

    布获胜总概率:(dfrac{1}{2} imes 0 + dfrac{1}{2} imes dfrac{16}{45} = dfrac{8}{45})

    琼获胜总概率:(dfrac{1}{2} imes dfrac{1}{2} + dfrac{1}{2} imes dfrac{49}{90} = dfrac{47}{90})

    故琼最NB!

    PS:后来发现不需要这么疯狂讨论,只需要随便讨论布史的先后顺序即可,因为琼在哪个位置都是不影响的,若他先手他肯定不会开枪,问题就转化为了琼后手的情况~

  • 相关阅读:
    spring cloud-之入门技术选型的抉择
    jvm系列之-gc日志查看
    jvm系列之-参数设置
    Code completion has become quite slow under Delphi7
    Python4Delphi注意事项
    SHFileOperation删除文件夹
    开漏输出,推挽输出
    DxGrexpt中的ExcelFormat (BIFF)
    通过exe名字查询句柄,String与ShortString转换函数分析
    Netstat判断商品是否正在使用
  • 原文地址:https://www.cnblogs.com/dmoransky/p/12631064.html
Copyright © 2011-2022 走看看