zoukankan      html  css  js  c++  java
  • CF1373F Network Coverage

    题目链接

    对于每一个 (i) 可以看作一个管道。赋予三个信息:

    • ( ext{minIn}_i) 表示至少要从上一家 (i - 1) 得到连接数,才能正常供给 (i) 城市
    • ( ext{minOut}_i) 最坏情况下最少给下一家 (i + 1) 多少连接数
    • ( ext{maxOut}_i) 表示最多能给下一家 (i + 1) 多少连接数

    三个变量维护完毕,我们发现我们可以通过某种方法合并两个相邻的管道,最后剩下一个管道,只需自检查 ( ext{minIn} le ext{minOut}) 即可(在最低限度下自我循环传输)。

    合并需要分类讨论,假如合并 (x, y)

    • 首先必须满足 (x.maxOut ge y.minIn),不然无论何时都满足不了。
    • 如果 (x.minOut le y.minIn),那么合并后的最低需求会变大,最大输出量也会被 (x.maxOut) 而限制
    • 否则,最低输出量会被提高(或不变),最大输出量同样受到限制。
    #include <cstdio>
    #include <iostream>
    
    using namespace std;
    
    const int N = 1000005;
    
    int n, a[N], b[N];
    
    struct Pipe{
    	int minIn, minOut, maxOut;
    };
    
    Pipe get(int x, int y) {
    	if (x <= y) return (Pipe) { 0, y - x, y };
    	else return (Pipe) { x - y, 0, y };
    }
    
    Pipe merge(Pipe x, Pipe y) {
    	if (x.maxOut < y.minIn) return (Pipe) { -1, -1, -1 };
    	if (x.minOut <= y.minIn) return (Pipe) { x.minIn + y.minIn - x.minOut, y.minOut, min(y.maxOut, y.minOut + x.maxOut - y.minIn) };
    	else return (Pipe) { x.minIn, min(y.maxOut, y.minOut + x.minOut - y.minIn), min(y.maxOut, y.minOut + x.maxOut - y.minIn)  }; 
    }
    
    int main() {
    	int T; scanf("%d", &T);
    	while (T--) {
    		scanf("%d", &n);
    		for (int i = 1; i <= n; i++) scanf("%d", a + i);
    		for (int i = 1; i <= n; i++) scanf("%d", b + i);
    		Pipe cur = get(a[1], b[1]);
    		bool ok = true;
    		for (int i = 2; i <= n; i++) {
    			cur = merge(cur, get(a[i], b[i]));
    			if (cur.minIn == -1) { ok = false; break; }
    		}
    		if (cur.minOut < cur.minIn) ok = false;
    		puts(ok ? "YES" : "NO");
    	}
    	return 0;
    }
    
  • 相关阅读:
    时间选择框(可用于Form)
    点击复制指定内容
    ajax中多个模板之间套用ajax
    Java学习路径
    Windows平台安装Python
    Python语法-第2关
    Python语法-第1关
    Python语法-第0关
    图像识别
    wx:for用法
  • 原文地址:https://www.cnblogs.com/dmoransky/p/13200527.html
Copyright © 2011-2022 走看看