文化课 + 竞赛双废物又来水题解了。
首先,对于题干中的人,很像网络流中的流量,但是他有一个每天人数的下限,我从网上借鉴(chaoxi)到了两种思路:
- 把下界限制转化为一条边的流量下界,这样就是最小费用上下界最大流。
- 加入几个新值,其条件正好为 (ge 0),将其当做一条流量,这样不等式就变成了等式,我们可以利用流量守恒,用点的流满 $Leftrightarrow $ 等式成立,这样就变成了一个最小费用最大流,去掉了上下界的影响。
其实这两种思路本质好像是一致的...
思路一
即 (y) 总视频的解法,考虑到人的工作时间是一段区间,不妨差分考虑,先让 (i) 的人无条件免费顺延到 (i + 1) 的边,然后在 (S) 和 (T) 人为规定加入/去除即可,这样一类工作者只会设计常数的点边,复杂度正常。
那么建立网络 (G):
- 对于一天 (i),让 (i) 点向 (i + 1) 点连边。流量下界是 (A_i)、上界是正无穷,费用是 (0),这条边的流量意味着第 (i) 天的工作人数,
- 对于一类志愿者 (j),让 (T_j + 1) 向 (S_j) 连一条容量无界限,费用是 (C_i) 的边,这条边可以自由活动,意味着自由安排是志愿者。
这样,每个志愿者相当于在流网络的一单位的流量流过了一个环,这个问题变成了最小费用无源汇上下界可行流,我们都知道可行流的可行判定经过转化就是跑到最大流,所以转化完后用最小费用最大流就行了。
时间复杂度
(O(n^2m)) 复杂度真棒
Code
这题 Acwing 咋这么卡常啊
#include <iostream>
#include <cstdio>
#include <cstring>
#define rint register int
typedef long long LL;
using namespace std;
const int N = 1005, M = (N * 2 + 10000) * 2, INF = 0x3f3f3f3f;
int n, m, a[N], incf[N], d[N], q[N], pre[N];
int head[N], numE = 1, S, T;
bool vis[N];
LL ans;
struct E{
int next, v, w, c;
} e[M];
void inline add(int u, int v, int w, int c) {
e[++numE] = (E) { head[u], v, w, c };
head[u] = numE;
e[++numE] = (E) { head[v], u, 0, -c };
head[v] = numE;
}
bool inline spfa() {
memset(d, 0x3f, sizeof d);
rint hh = 0, tt = 1;
d[S] = 0, q[0] = S, incf[S] = INF;
while (hh != tt) {
rint u = q[hh++]; vis[u] = false;
if (hh == N) hh = 0;
for (rint i = head[u]; i; i = e[i].next) {
rint v = e[i].v;
if (d[u] + e[i].c < d[v] && e[i].w) {
d[v] = d[u] + e[i].c, pre[v] = i, incf[v] = min(incf[u], e[i].w);
if (!vis[v]) {
vis[v] = true, q[tt++] = v;
if (tt == N) tt = 0;
}
}
}
}
return d[T] != INF;
}
void inline update() {
int x = T;
while (x != S) {
int i = pre[x];
e[i].w -= incf[T], e[i ^ 1].w += incf[T];
x = e[i ^ 1].v;
}
ans += (LL)d[T] * incf[T];
}
int main() {
scanf("%d%d", &n, &m);
S = n + 2, T = n + 3;
for (rint i = 1, A; i <= n; i++) {
scanf("%d", &A);
add(i, i + 1, INF, 0);
a[i] -= A, a[i + 1] += A;
}
for (rint i = 1, s, t, c; i <= m; i++) {
scanf("%d%d%d", &s, &t, &c);
add(t + 1, s, INF, c);
}
for (rint i = 1; i <= n + 1; i++) {
if (a[i] > 0) add(S, i, a[i], 0);
else if (a[i] < 0) add(i, T, -a[i], 0);
}
while (spfa()) update();
printf("%lld
", ans);
return 0;
}
思路二
设一些新的变量:
-
(B_i (B_i ge 0)),表示第 (i) 天实际招了 (A_i + B_i) 人。
-
(D_i (D_i ge 0)),表示实际上第 (i) 类志愿者招了 (D_i) 类人
这样我们就可以列出 (n) 个等式,对于第 (i) 个等式(针对第 (i) 天的匹配情况)
但是为了让每个变量在流网络中、在每个等式中都相等,所以我们得让每个变量至多出现在两个式子中,(如果出现在一个式子,就可以将其到源汇点的费用改了,这样就是费用对应上了,如果两个式子,可以从本该连向汇点的边直接连向本该从源点出的边,这样费用对应。这里本人实力还是非常菜,很可能讲了一些玄学的东西,求大佬们轻喷。)
由于每个 (j) 影响的 (i) 是连续的一段,所以我们可以将式子前后加入两个 (0 = 0),然后将式子差分(这是一步等价变换)这样每个 (D_j, B_i) 都恰好会出现在两个式子之中。
对于第 (i) 个等式而言,差分后的式子:
我们把式子移项,让每一项都是正的:
这样,我们可以把等式看作一个点的流量守恒等式,等式左右两侧分别是流入该点/流出改点的流量,我们建立流网络:
- 对于常量 (A),在左侧则连一条自虚拟源点出发,到 (i) 点,流量为 (A_i),无费用的边,右侧连到汇点,即对称的。
- 对于变量 (B),从 (B_i) 所在右侧等式的点向 (B_i) 所在左侧的点,即 (i) 连向 (i-1),这条边流量无限,意味着自由选择的 (B),而这条边 + 流量守恒保证了 (B_i) 在两个式子中不变
- 对于变量 (D) 同理,即 (S_j) 连向 (T_j + 1),流量无限,费用为 (C_j) 的边。
这样,在流网络跑到的最大流 = 从 (S) 出发所有容量(满足常量的强行限制) (Leftrightarrow) 差分等式成立 (Leftrightarrow) 原始等式成立 (Leftrightarrow) 一个满足条件的方案
所以,原问题最小费用 (Leftrightarrow) 最小费用最大流
时间复杂度
(O(n^2m))
Code
这个代码过不去acwing。。坑
#pragma GCC optimize("Ofast","-funroll-loops")
#include <iostream>
#include <cstdio>
#include <cstring>
#define rint register int
typedef long long LL;
using namespace std;
const int N = 1005, M = (N * 3 + 10000) * 2, INF = 0x3f3f3f3f;
int n, m, a[N], incf[N], d[N], q[N], pre[N];
int head[N], numE = 1, S, T;
bool vis[N];
LL ans;
struct E{
int next, v, w, c;
} e[M];
void inline add(int u, int v, int w, int c) {
e[++numE] = (E) { head[u], v, w, c };
head[u] = numE;
e[++numE] = (E) { head[v], u, 0, -c };
head[v] = numE;
}
bool inline spfa() {
memset(d, 0x3f, sizeof d);
rint hh = 0, tt = 1;
d[S] = 0, q[0] = S, incf[S] = INF;
while (hh != tt) {
rint u = q[hh++]; vis[u] = false;
if (hh == N) hh = 0;
for (rint i = head[u]; i; i = e[i].next) {
rint v = e[i].v;
if (d[u] + e[i].c < d[v] && e[i].w) {
d[v] = d[u] + e[i].c, pre[v] = i, incf[v] = min(incf[u], e[i].w);
if (!vis[v]) {
vis[v] = true;
q[tt++] = v;
if (tt == N) tt = 0;
}
}
}
}
return d[T] != INF;
}
void inline update() {
int x = T;
while (x != S) {
int i = pre[x];
e[i].w -= incf[T], e[i ^ 1].w += incf[T];
x = e[i ^ 1].v;
}
ans += (LL)d[T] * incf[T];
}
int main() {
scanf("%d%d", &n, &m);
S = n + 2, T = n + 3;
for (rint i = 1, A; i <= n; i++) {
scanf("%d", &A);
add(S, i, A, 0), add(i + 1, T, A, 0);
add(i + 1, i, INF, 0);
}
for (rint i = 1, s, t, c; i <= m; i++) {
scanf("%d%d%d", &s, &t, &c);
add(s, t + 1, INF, c);
}
while (spfa()) update();
printf("%lld
", ans);
return 0;
}