zoukankan      html  css  js  c++  java
  • Deep Learning 3_深度学习UFLDL教程:预处理之主成分分析与白化_总结(斯坦福大学深度学习教程)

    1PCA

        ①PCA的作用:一是降维;二是可用于数据可视化;

    注意:降维的原因是因为原始数据太大,希望提高训练速度但又不希望产生很大的误差。

        ② PCA的使用场合:一是希望提高训练速度;二是内存太小;三是希望数据可视化。

        ③用PCA前的预处理:(1)规整化特征的均值大致为0;(2)规整化不同特征的方差值彼此相似。

        对于自然图片,即使不进行方差归一化操作,条件(2)也自然满足,故而我们不再进行任何方差归一化操作(对音频数据,如声谱,或文本数据,如词袋向量,我们通常也不进行方差归一化)。非自然图像有手写文字,或者白背景正中摆放单独物体等。

    2白化(whitening)

        ①白化的作用:去掉数据之间的相关联度,是很多算法进行预处理的步骤。

        ②数据的whitening必须满足两个条件:一是不同特征间相关性最小,接近0;二是所有特征的方差相等(不一定为1)。常见的白化操作有PCA whitening和ZCA whitening。

    PCA whitening:是指将数据x经过PCA转换为 	extstyle x_{
m rot} ,然后降维为 	extstyle 	ilde{x} 后,可以看出 	extstyle 	ilde{x} 中每一维是独立的,满足whitening白化的第一个条件,这是只需要将z中的每一维都除以标准差就得到了每一维的方差为1,也就是说方差相等,故PCA白化后的数据方差一定都为1。它主要用于降维、去除相关性。公式如下:

    egin{align}
x_{{
m PCAwhite},i} = frac{x_{{
m rot},i} }{sqrt{lambda_i}}.   
end{align}

    ZCA whitening:是指数据x先经过PCA变换为 	extstyle x_{
m rot} ,但是并不降维,因为这里是把所有的成分都选进去了。这是也同样满足whtienning的第一个条件,特征间相互独立。然后同样进行方差为1的操作,最后将得到的矩阵左乘一个特征向量矩阵U即可,故ZCA白化后的数据方差并不为1但都相等。它主要用于去除相关性且尽量保持原始数据。公式如下:

    egin{align}
x_{
m ZCAwhite} = U x_{
m PCAwhite}
end{align}

    参考资料:

    UFLDL

    http://www.cnblogs.com/tornadomeet/archive/2013/03/21/2973231.html

  • 相关阅读:
    C# 函数式编程
    【python】 入门 搭建环境
    luogu P3978 [TJOI2015]概率论
    luogu P4778 Counting swaps
    luogu P2480 [SDOI2010]古代猪文
    luogu P3243 [HNOI2015]菜肴制作
    luogu P4744 [Wind Festival]Iron Man
    luogu P4448 [AHOI2018初中组]球球的排列
    luogu P1593 因子和
    luogu P1943 LocalMaxima_NOI导刊2009提高(1)
  • 原文地址:https://www.cnblogs.com/dmzhuo/p/4923095.html
Copyright © 2011-2022 走看看