zoukankan      html  css  js  c++  java
  • Deep Learning 10_深度学习UFLDL教程:Convolution and Pooling_exercise(斯坦福大学深度学习教程)

    前言

    理论知识UFLDL教程http://www.cnblogs.com/tornadomeet/archive/2013/04/09/3009830.html

    实验环境:win7, matlab2015b,16G内存,2T机械硬盘

    实验内容Exercise:Convolution and Pooling。从2000张64*64的RGB图片(它是 the STL10 Dataset的一个子集)中提取特征作为训练数据集,训练softmax分类器,然后从3200张64*64的RGB图片(它是 the STL10 Dataset的另一个子集)中提取特征作为测试数据集,输入到前面已经训练好的softmax分类器,把这3200张图片分为4类:airplane, car, cat, dog。

    实验基础说明

    1.怎么样从2000张64*64的RGB图片中提取特征得到训练集,怎么样从3200张64*64的RGB图片中提取特征得到测试集?

    因为这里的RGB图片是64*64,尺寸较大,而不是前面所有实验中用的8*8的小图像块,如果用Deep Learning九之深度学习UFLDL教程:linear decoder_exercise(斯坦福大学深度学习教程)中的方法直接从大尺寸图片中提取特征,那么运算量就太大,所以,为了减小运算量,不能直接从大尺寸图片中提取特征,而是要用间接的减小运算量的方法,这个方法利用了自然图像的固有特性:自然图像的一部分的统计特性与其他部分是一样的。这个固有特性也就意味着:从自然图像的某一部分A中学习的特征L_feature也能用在该自然图像的另一部分B上。也就是说,对于这个自然图像上的所有位置,我们都能使用同样的学习特征。那么究竟怎么样从这个大尺寸自然图像提取出它的L_feature特征呢(这个特征是从它的一部分A上学习到的)?答案是卷积!即把这个特征和大尺寸图片相卷,就可以提取这个大尺寸图片的L_feature特征,至于原因请看下面。这个L_feature特征维数只会比大尺寸图片稍微小一点(假设从小图像块中学习到的特征是8*8,大尺寸图片是64*64,那么这个L_feature特征就是(64-8+1)*(64-8+1),即:57*57),如果把这些特征作训练数据集,那么运算量还是很大,输入层神经元节点数还是要57*57*3个,所以我们再对这些特征用池化的方法(即:假设池化的维数是19,池化就是把57*57的特征依次分为19*19的9个小部分,然后把每个小部分变为一个值(如果这个值是每个小部分的平均值就是平均池化,是最大值就是最大池化),从而把这个57*57的特征变为了3*3的特征),从而最后从2000张64*64的RGB图片中提取出了3*3的特征得到了训练数据集,同理,可得到测试数据集。

          具体方法:

          是从the STL10 Dataset中随机抽样选出10万张8*8的RGB小图像块(即:Sampled 8x8 patches from the STL-10 dataset),然后对它们进行预处理,具体包括:先对它们进行0均值化(注意:不是每个样本各自单独0均值化),再对它们进行ZCA白化。

          是对预处理后的数据利用线性解码器提取出M个颜色特征。

    前两步已经在Deep Learning九之深度学习UFLDL教程:linear decoder_exercise(斯坦福大学深度学习教程)中实现。

          是把2000张64*64的 RGB图片中的每一张图片都分别与第二步中提取出的M个特征相卷积,从而就能在每张64*64的 RGB图片中都提取出在第二步中学习到的M个特征,共得到2000*M个卷积特征。

          是把这2000*M个特征进行池化,减小它的维数,从而得到了训练数据集。同理,可得到测试数据集。

     后两步就是本节实验的内容。

     2.为什么从自然图像上的一部分A提取出L_feature特征后,要提取这整张自然图像的L_feature特征的方法是:把这个特征和这个自然图像相卷积?

    首先,我们要明确知道:

    ① 卷积运算图解:

     ② 从数据集Y中提取特征F(F是从数据集X中通过稀疏自动编码器提取到的特征)的方法:

    如果用数据集X训练稀疏自动编码器,得到稀疏自动编码器的权重参数是opttheta,从而就提取到特征F,F就是稀疏自动编码器的激活值,即F=sigmod(X*opttheta),而把数据集Y通过该训练过稀疏自动编码器得到的激活值就是从数据集Y中提取的特征F,即:F=sigmod(Y*opttheta)。

    这一点实际上已经在Deep Learning七之深度学习UFLDL教程:Self-Taught Learning_Exercise(斯坦福大学深度学习教程)的“实验内容及步骤”中的第一、二点提到。

    ③ 我们要清楚从自然图像的某一部分A中提取L_feature特征的方法是线性解码器,它的第一层实际上是一个稀疏自动编码器(假设用A来训练该稀疏自动编码器得到其网络参数为opttheta1),我们说的这个L_feature特征实际上就是这个第一层稀疏自动编码器的激活值,即:L_feature=sigmod(A*opttheta1)

    其次,在清楚以上三点的情况下,我们才能进行如下说明:

    假设这个L_feature特征大小是8*8,要从这整张自然图像中提取L_feature特征的方法是:从这整张自然图像上依次抽取8*8区域Q通过前面提到的网络参数为opttheta1的稀疏自动编码器,即可得到从Q上提取的L_feature特征,即为其激活值:L_featuresigmod(Q*opttheta1)。这些所有8*8区域提取的L_feature特征组合在一起,就是这整张自然图像上提取的L_feature特征。这个过程就是Ng在讲解中说明的,把这个L_feature特征作为探测器,应用到这个图像的任意地方中去的过程。这个过程如下:

    Convolution schematic.gif

    而这以上整个过程,基本正好符合卷积运算,所以我们把得到特征叫卷积特征,即:这个过程基本正好是opttheta1与整张自然图像的卷积过程,只两个不同之处

    a. 卷积运算时,opttheta1的倒序依次与区域Q相乘,而我们实际计算L_feature特征时opttheta1不是倒序的。所以为了能直接运用卷积,我们可先把opttheta1倒序再与整张自然图像进行卷积,得到的就正好是L_feature特征。所以,在cnnConvolve.m中的cnnConvolve函数有这句代码来倒序:

                               feature = rot90(squeeze(feature),2);

    当然,Ng用的是这句:

                              feature = flipud(fliplr(squeeze(feature)));

    相比起来, rot90的运行速度更快,我在这里做了改进。

    b. 整个卷积运算过程实际上还包含了使用边缘补 0 部分进行计算的卷积结果部分,而我们并不需要这个部分,所以我们在cnnConvolve.m中的cnnConvolve函数中有:

    convolvedImage = convolvedImage + conv2(im, feature, 'valid');

    参数valid使返回在卷积过程中,未使用边缘补 0 部分进行计算的卷积结果部分。

    综上,所以把这个特征和这个自然图像相卷积即可提取这整张自然图像的L_feature特征。

      

    3.一些matlab函数

    squeeze:  移除单一维

    使用方法 :B=squeeze(A)

    返回和矩阵A相同元素但所有单一维都移除的矩阵B,单一维是满足size(A,dim)=1的维。
    squeeze命令对二维数组是不起作用的;
    如果A是一行或列向量或一标量(1*1)值,则B=A。

    例如:2*1*3 数组Y = rand(2,1,3). 这个数组有单一维 —就是每页仅仅一列:

    Y =

    Y(:,:,1) =

    0.5194

    0.8310

     Y(:,:,2) =
     0.0346
     0.0535

    Y(:,:,3) =
    0.5297  
    0.6711

    命令Z = squeeze(Y)结果是2*3矩阵:
    Z =
    0.5194 0.0346 0.5297
    0.8310 0.0535 0.6711

    rot90(X)

    Ng教程中用的是:W = flipud(fliplr(W));

    这个函数可用rot90(W,2)代替,因为它的运行速度更快。估计是Ng写这个教程的时候在2011年,rot90这个函数在matlab中还没出现,好像是在2012年才出现的。

    用法:rot90(X),其中X表示一个矩阵。

    功能:rot90函数是matlab中使一个矩阵逆时针旋转90度的函数。Y=rot90(X)表示使矩阵X逆时针旋转90度,作为新的矩阵Y,但矩阵X本身不变。

    rot90(x,2),其中X表示一个矩阵。功能:将矩阵x旋转180度,形成新的矩阵,但x本身不变。

    rot90(x,n),其中x表示一个矩阵,n为正整数,默认功能:将矩阵x逆时针旋转90*n度,形成新矩阵,x本身不变。

    conv2

    格式:C=conv2(A,B)

            C=conv2(Hcol,Hrow,A)

             C=conv2(...,'shape')
    说明:

     C=conv2(A,B) ,conv2 的算矩阵 A 和 B 的卷积,若 [Ma,Na]=size(A), [Mb,Nb]=size(B), 则 size(C)=[Ma+Mb-1,Na+Nb-1];

     C=conv2(Hcol,Hrow,A) 中,矩阵 A 分别与 Hcol 向量在列方向和 Hrow 向量在行方向上进行卷积;

    C=conv2(...,'shape') 用来指定 conv2返回二维卷积结果部分,参数 shape 可取值如下:

               full 为缺省值,返回二维卷积的全部结果;
               same 返回二维卷积结果中与 A 大小相同的中间部分;
               valid 返回在卷积过程中,未使用边缘补 0 部分进行计算的卷积结果部分,当 size(A)>size(B)时,size(C)=[Ma-Mb+1,Na-Nb+1]

     permute

    语法格式:

    B = permute(A,order)

    按照向量order指定的顺序重排A的各维。B中元素和A中元素完全相同。但由于经过重新排列,在A、B访问同一个元素使用的下标就不一样了。order中的元素必须各不相同

    三维:

    a=rand(2,3,4); %这是一个三维数组,各维的长度分别为:2,3,4
    %现在交换第一维和第二维:
    permute(A,[2,1,3]) %变成3*2*4的矩阵

    二维:

    二维的更形象,a=[1,2+j;3+2*j,4+5*j];permute(a,[2,1]),相当于把行(x)、列(y)互换;有别于转置(a'),你试一下就知道了。所以就叫非共轭转置。

    4.优秀的编程技巧

    ①在Ng的代码中,总是有检查的习惯,无论是前面的梯度计算还是本节实验中的卷积和池化等,Ng都会在计算完后想办法来验证前面的计算是否正确,这是一个良好的习惯,起码可以保证这些关键步骤没有错误。

    ②可用类似语句来检查代码:

    assert(mod(hiddenSize, stepSize) == 0, 'stepSize should divide hiddenSize');

    以及

    if abs(features(featureNum, 1) - convolvedFeatures(featureNum, imageNum, imageRow, imageCol)) > 1e-9
    fprintf('Convolved feature does not match activation from autoencoder ');

    end

    5.

    代价函数 	extstyle J_{
m sparse}(W,b) 为:

     
egin{align}
J(W,b)
&= left[ frac{1}{m} sum_{i=1}^m J(W,b;x^{(i)},y^{(i)}) 
ight]
                       + frac{lambda}{2} sum_{l=1}^{n_l-1} ; sum_{i=1}^{s_l} ; sum_{j=1}^{s_{l+1}} left( W^{(l)}_{ji} 
ight)^2
 \
&= left[ frac{1}{m} sum_{i=1}^m left( frac{1}{2} left| h_{W,b}(x^{(i)}) - y^{(i)} 
ight|^2 
ight) 
ight]
                       + frac{lambda}{2} sum_{l=1}^{n_l-1} ; sum_{i=1}^{s_l} ; sum_{j=1}^{s_{l+1}} left( W^{(l)}_{ji} 
ight)^2
end{align}

     	extstyle {
m KL}(
ho || hat
ho_j)
 = 
ho log frac{
ho}{hat
ho_j} + (1-
ho) log frac{1-
ho}{1-hat
ho_j},其中   egin{align}
hat
ho_j = frac{1}{m} sum_{i=1}^m left[ a^{(2)}_j(x^{(i)}) 
ight]
end{align}

    egin{align}
J_{
m sparse}(W,b) = J(W,b) + eta sum_{j=1}^{s_2} {
m KL}(
ho || hat
ho_j),
end{align} 

    计算梯度需要用到的公式:

    
egin{align}
delta_i^{(3)} = - (y_i - hat{x}_i)
end{align}
,其中y是期望的输出。

    egin{align}
delta^{(2)}_i =
  left( left( sum_{j=1}^{s_{2}} W^{(2)}_{ji} delta^{(3)}_j 
ight)
+ eta left( - frac{
ho}{hat
ho_i} + frac{1-
ho}{1-hat
ho_i} 
ight) 
ight) f'(z^{(2)}_i) .
end{align}  其中, 	extstyle f'(z^{(l)}_i) = a^{(l)}_i (1- a^{(l)}_i)

     egin{align}

abla_{W^{(l)}} J(W,b;x,y) &= delta^{(l+1)} (a^{(l)})^T, \

abla_{b^{(l)}} J(W,b;x,y) &= delta^{(l+1)}.
end{align}

    令 	extstyle Delta W^{(l)} := 0 , 	extstyle Delta b^{(l)} := 0 

     	extstyle Delta W^{(l)} := Delta W^{(l)} + 
abla_{W^{(l)}} J(W,b;x,y)

     	extstyle Delta b^{(l)} := Delta b^{(l)} + 
abla_{b^{(l)}} J(W,b;x,y)

    egin{align}

abla_{W^{(l)}} J(W,b) &= left( frac{1}{m} Delta W^{(l)} 
ight) + lambda W^{(l)} \

abla_{b^{(l)}} J(W,b) &= frac{1}{m} Delta b^{(l)}.
end{align}

    疑问

    1.从代码中可看出,为什么对10万张小图像块要经过预处理(0均值化和ZCA白化),而对2000张和3200张64*64RGB图片却未进行预处理?感觉自己对什么时候该进行预处理,什么时候不用进行预处理,为什么这样,都没完全掌握!比如:在Deep Learning四之深度学习UFLDL教程:PCA in 2D_Exercise(斯坦福大学深度学习教程)中为什么二维数据不用进行0均值化,而自然图像就要先0均值化?

    实验步骤

    1.初始化参数,加载上一节实验结果,即:10万张8*8的RGB小图像块中提取的颜色特征,并把特征可视化。

    2.先加载8张64*64的图片(用来测试卷积和池化是否正确),再实现卷积函数cnnConvolve.m,并检查该函数是否正确。

    3.实现池化函数cnnPool.m,并检查该函数是否正确。

    4.加载2000张64*64RGB图片,利用前面实现的卷积函数从中提取出卷积特征convolvedFeaturesThis后,再利用池化函数从convolvedFeaturesThis中提取出池化特征pooledFeaturesTrain,把它作为softmax分类器的训练数据集;加载3200张64*64RGB图片,利用前面实现的卷积函数从中提取出卷积特征convolvedFeaturesThis后,再利用池化函数从convolvedFeaturesThis中提取出池化特征pooledFeaturesTest,把它作为softmax分类器的测试数据集。

    5.用训练数据集pooledFeaturesTrain及其标签训练softmax分类器,得到模型参数softmaxModel。

    6.利用训练过的模型参数为pooledFeaturesTest的softmax分类器对测试数据集pooledFeaturesTest进行分类,即得到3200张64*64RGB图片的分类结果。

     

     运行结果

    Accuracy: 80.313%

    所有训练数据和测试数据的卷积和池化特征的提取所用时间为:

    Elapsed time is 2644.920372 seconds.

    特征可视化结果:



    代码
    cnnExercise.m
    %% CS294A/CS294W Convolutional Neural Networks Exercise
    
    %  Instructions
    %  ------------
    % 
    %  This file contains code that helps you get started on the
    %  convolutional neural networks exercise. In this exercise, you will only
    %  need to modify cnnConvolve.m and cnnPool.m. You will not need to modify
    %  this file.
    
    %%======================================================================
    %% STEP 0: Initialization
    %  Here we initialize some parameters used for the exercise.
    
    imageDim = 64;         % image dimension
    imageChannels = 3;     % number of channels (rgb, so 3)
    
    patchDim = 8;          % patch dimension
    numPatches = 50000;    % number of patches
    
    visibleSize = patchDim * patchDim * imageChannels;  % number of input units 
    outputSize = visibleSize;   % number of output units
    hiddenSize = 400;           % number of hidden units 
    
    epsilon = 0.1;           % epsilon for ZCA whitening
    
    poolDim = 19;          % dimension of pooling region
    
    %%======================================================================
    %% STEP 1: Train a sparse autoencoder (with a linear decoder) to learn 
    %  features from color patches. If you have completed the linear decoder
    %  execise, use the features that you have obtained from that exercise, 
    %  loading them into optTheta. Recall that we have to keep around the 
    %  parameters used in whitening (i.e., the ZCA whitening matrix and the
    %  meanPatch)
    
    % --------------------------- YOUR CODE HERE --------------------------
    % Train the sparse autoencoder and fill the following variables with 
    % the optimal parameters:
    
    optTheta =  zeros(2*hiddenSize*visibleSize+hiddenSize+visibleSize, 1);
    ZCAWhite =  zeros(visibleSize, visibleSize);
    meanPatch = zeros(visibleSize, 1);
    load STL10Features.mat;
    
    % --------------------------------------------------------------------
    
    % Display and check to see that the features look good
    W = reshape(optTheta(1:visibleSize * hiddenSize), hiddenSize, visibleSize);
    b = optTheta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);
    
    displayColorNetwork( (W*ZCAWhite)');
    
    %%======================================================================
    %% STEP 2: Implement and test convolution and pooling
    %  In this step, you will implement convolution and pooling, and test them
    %  on a small part of the data set to ensure that you have implemented
    %  these two functions correctly. In the next step, you will actually
    %  convolve and pool the features with the STL10 images.
    
    %% STEP 2a: Implement convolution
    %  Implement convolution in the function cnnConvolve in cnnConvolve.m
    
    % Note that we have to preprocess the images in the exact same way 
    % we preprocessed the patches before we can obtain the feature activations.
    
    load stlTrainSubset.mat % loads numTrainImages, trainImages, trainLabels
    
    %% 只用8张图片来测试卷积和池化是否正确 Use only the first 8 images for testing
    convImages = trainImages(:, :, :, 1:8);  % 格式:trainImages(r, c, channel, image number)
    
    % NOTE: Implement cnnConvolve in cnnConvolve.m first!
    convolvedFeatures = cnnConvolve(patchDim, hiddenSize, convImages, W, b, ZCAWhite, meanPatch);
    
    %% STEP 2b: Checking your convolution
    %  To ensure that you have convolved the features correctly, we have
    %  provided some code to compare the results of your convolution with
    %  activations from the sparse autoencoder
    
    % For 1000 random points
    for i = 1:1000    
        featureNum = randi([1, hiddenSize]);
        imageNum = randi([1, 8]);
        imageRow = randi([1, imageDim - patchDim + 1]);
        imageCol = randi([1, imageDim - patchDim + 1]);    
       
        patch = convImages(imageRow:imageRow + patchDim - 1, imageCol:imageCol + patchDim - 1, :, imageNum);
        patch = patch(:);  % 将patch矩阵从3维矩阵转换为一个列向量         
        patch = patch - meanPatch;
        patch = ZCAWhite * patch;  % 白化后的数据
        
        features = feedForwardAutoencoder(optTheta, hiddenSize, visibleSize, patch); 
    
        if abs(features(featureNum, 1) - convolvedFeatures(featureNum, imageNum, imageRow, imageCol)) > 1e-9
            fprintf('Convolved feature does not match activation from autoencoder
    ');
            fprintf('Feature Number    : %d
    ', featureNum);
            fprintf('Image Number      : %d
    ', imageNum);
            fprintf('Image Row         : %d
    ', imageRow);
            fprintf('Image Column      : %d
    ', imageCol);
            fprintf('Convolved feature : %0.5f
    ', convolvedFeatures(featureNum, imageNum, imageRow, imageCol));
            fprintf('Sparse AE feature : %0.5f
    ', features(featureNum, 1));       
            error('Convolved feature does not match activation from autoencoder');
        end 
    end
    
    disp('Congratulations! Your convolution code passed the test.');
    
    %% STEP 2c: Implement pooling
    %  Implement pooling in the function cnnPool in cnnPool.m
    
    % NOTE: Implement cnnPool in cnnPool.m first!
    pooledFeatures = cnnPool(poolDim, convolvedFeatures);
    
    %% STEP 2d: Checking your pooling
    %  To ensure that you have implemented pooling, we will use your pooling
    %  function to pool over a test matrix and check the results.
    
    testMatrix = reshape(1:64, 8, 8);
    expectedMatrix = [mean(mean(testMatrix(1:4, 1:4))) mean(mean(testMatrix(1:4, 5:8))); ...
                      mean(mean(testMatrix(5:8, 1:4))) mean(mean(testMatrix(5:8, 5:8))); ];
                
    testMatrix = reshape(testMatrix, 1, 1, 8, 8);
            
    pooledFeatures = squeeze(cnnPool(4, testMatrix));
    
    if ~isequal(pooledFeatures, expectedMatrix)
        disp('Pooling incorrect');
        disp('Expected');
        disp(expectedMatrix);
        disp('Got');
        disp(pooledFeatures);
    else
        disp('Congratulations! Your pooling code passed the test.');
    end
    
    %%======================================================================
    %% STEP 3: Convolve and pool with the dataset
    %  In this step, you will convolve each of the features you learned with
    %  the full large images to obtain the convolved features. You will then
    %  pool the convolved features to obtain the pooled features for
    %  classification.
    %
    %  Because the convolved features matrix is very large, we will do the
    %  convolution and pooling 50 features at a time to avoid running out of
    %  memory. Reduce this number if necessary
    
    stepSize = 50;
    assert(mod(hiddenSize, stepSize) == 0, 'stepSize should divide hiddenSize');
    
    load stlTrainSubset.mat % loads numTrainImages, trainImages, trainLabels
    load stlTestSubset.mat  % loads numTestImages,  testImages,  testLabels
    
    pooledFeaturesTrain = zeros(hiddenSize, numTrainImages, ...
        floor((imageDim - patchDim + 1) / poolDim), ...
        floor((imageDim - patchDim + 1) / poolDim) );
    pooledFeaturesTest = zeros(hiddenSize, numTestImages, ...
        floor((imageDim - patchDim + 1) / poolDim), ...
        floor((imageDim - patchDim + 1) / poolDim) );
    
    tic();
    
    for convPart = 1:(hiddenSize / stepSize)
        
        featureStart = (convPart - 1) * stepSize + 1;
        featureEnd = convPart * stepSize;
        
        fprintf('Step %d: features %d to %d
    ', convPart, featureStart, featureEnd);  
        Wt = W(featureStart:featureEnd, :);
        bt = b(featureStart:featureEnd);    
        
        fprintf('Convolving and pooling train images
    ');
        convolvedFeaturesThis = cnnConvolve(patchDim, stepSize, ...
            trainImages, Wt, bt, ZCAWhite, meanPatch);
        pooledFeaturesThis = cnnPool(poolDim, convolvedFeaturesThis);
        pooledFeaturesTrain(featureStart:featureEnd, :, :, :) = pooledFeaturesThis;   
        toc();
        clear convolvedFeaturesThis pooledFeaturesThis;
        
        fprintf('Convolving and pooling test images
    ');
        convolvedFeaturesThis = cnnConvolve(patchDim, stepSize, ...
            testImages, Wt, bt, ZCAWhite, meanPatch);
        pooledFeaturesThis = cnnPool(poolDim, convolvedFeaturesThis);
        pooledFeaturesTest(featureStart:featureEnd, :, :, :) = pooledFeaturesThis;   
        toc();
    
        clear convolvedFeaturesThis pooledFeaturesThis;
    
    end
    
    
    % You might want to save the pooled features since convolution and pooling takes a long time
    save('cnnPooledFeatures.mat', 'pooledFeaturesTrain', 'pooledFeaturesTest');
    toc();
    
    %%======================================================================
    %% STEP 4: Use pooled features for classification
    %  Now, you will use your pooled features to train a softmax classifier,
    %  using softmaxTrain from the softmax exercise.
    %  Training the softmax classifer for 1000 iterations should take less than
    %  10 minutes.
    
    % Add the path to your softmax solution, if necessary
    % addpath /path/to/solution/
    
    % Setup parameters for softmax
    softmaxLambda = 1e-4;
    numClasses = 4;
    % Reshape the pooledFeatures to form an input vector for softmax
    softmaxX = permute(pooledFeaturesTrain, [1 3 4 2]); % 把pooledFeaturesTrain的第2维移到最后
    softmaxX = reshape(softmaxX, numel(pooledFeaturesTrain) / numTrainImages,...
        numTrainImages);
    softmaxY = trainLabels;
    
    options = struct;
    options.maxIter = 200;
    softmaxModel = softmaxTrain(numel(pooledFeaturesTrain) / numTrainImages,...
        numClasses, softmaxLambda, softmaxX, softmaxY, options);
    
    %%======================================================================
    %% STEP 5: Test classifer
    %  Now you will test your trained classifer against the test images
    
    softmaxX = permute(pooledFeaturesTest, [1 3 4 2]);
    softmaxX = reshape(softmaxX, numel(pooledFeaturesTest) / numTestImages, numTestImages);
    softmaxY = testLabels;
    
    [pred] = softmaxPredict(softmaxModel, softmaxX);
    acc = (pred(:) == softmaxY(:));
    acc = sum(acc) / size(acc, 1);
    fprintf('Accuracy: %2.3f%%
    ', acc * 100);
    
    % You should expect to get an accuracy of around 80% on the test images.
    
    
    cnnConvolve.m
    function convolvedFeatures = cnnConvolve(patchDim, numFeatures, images, W, b, ZCAWhite, meanPatch)
    %卷积特征提取:把每一个特征都与每一张大尺寸图片images相卷积,并返回卷积结果
    %cnnConvolve Returns the convolution of the features given by W and b with
    %the given images
    %
    % Parameters:
    %  patchDim - patch (feature) dimension
    %  numFeatures - number of features
    %  images - large images to convolve with, matrix in the form
    %           images(r, c, channel, image number)
    %  W, b - W, b for features from the sparse autoencoder
    %  ZCAWhite, meanPatch - ZCAWhitening and meanPatch matrices used for
    %                        preprocessing
    %
    % Returns:
    %  convolvedFeatures - matrix of convolved features in the form
    %                      convolvedFeatures(featureNum, imageNum, imageRow, imageCol)
    %                      表示第个featureNum特征与第imageNum张图片相卷的结果保存在矩阵
    %                      convolvedFeatures(featureNum, imageNum, :, :)的第imageRow行第imageCol列,
    %                      而每行和列的大小都为imageDim - patchDim + 1
    
    numImages = size(images, 4);     % 图片数量
    imageDim = size(images, 1);      % 每幅图片行数
    imageChannels = size(images, 3); % 每幅图片通道数
    
    patchSize = patchDim*patchDim;
    assert(numFeatures == size(W,1), 'W should have numFeatures rows');
    assert(patchSize*imageChannels == size(W,2), 'W should have patchSize*imageChannels cols');
    
    
    % Instructions:
    %   Convolve every feature with every large image here to produce the 
    %   numFeatures x numImages x (imageDim - patchDim + 1) x (imageDim - patchDim + 1) 
    %   matrix convolvedFeatures, such that 
    %   convolvedFeatures(featureNum, imageNum, imageRow, imageCol) is the
    %   value of the convolved featureNum feature for the imageNum image over
    %   the region (imageRow, imageCol) to (imageRow + patchDim - 1, imageCol + patchDim - 1)
    %
    % Expected running times: 
    %   Convolving with 100 images should take less than 3 minutes 
    %   Convolving with 5000 images should take around an hour
    %   (So to save time when testing, you should convolve with less images, as
    %   described earlier)
    
    % -------------------- YOUR CODE HERE --------------------
    % Precompute the matrices that will be used during the convolution. Recall
    % that you need to take into account the whitening and mean subtraction
    % steps
    
    WT = W*ZCAWhite;           % 等效的网络权值
    b_mean = b - WT*meanPatch; % 等效偏置项
    
    
    % --------------------------------------------------------
    
    convolvedFeatures = zeros(numFeatures, numImages, imageDim - patchDim + 1, imageDim - patchDim + 1);
    for imageNum = 1:numImages
      for featureNum = 1:numFeatures
    
        % convolution of image with feature matrix for each channel
        convolvedImage = zeros(imageDim - patchDim + 1, imageDim - patchDim + 1);
        for channel = 1:3
    
          % Obtain the feature (patchDim x patchDim) needed during the convolution
          % ---- YOUR CODE HERE ----
          offset = (channel-1)*patchSize;
          feature = reshape(WT(featureNum,offset+1:offset+patchSize), patchDim, patchDim);%取一个权值图像块出来
          im  = images(:,:,channel,imageNum);
          
          
          % ------------------------
    
          % Flip the feature matrix because of the definition of convolution, as explained later
          feature = rot90(squeeze(feature),2);
          
          % Obtain the image
          im = squeeze(images(:, :, channel, imageNum));
    
          % Convolve "feature" with "im", adding the result to convolvedImage
          % be sure to do a 'valid' convolution
          % ---- YOUR CODE HERE ----
    
          convolvedoneChannel = conv2(im, feature, 'valid');    % 单个特征分别与所有图片相卷
          convolvedImage = convolvedImage + convolvedoneChannel;% 直接把3通道的值加起来,理由:3通道相当于有3个feature-map,类似于cnn第2层以后的输入。
                
          % ------------------------
    
        end
        
        % Subtract the bias unit (correcting for the mean subtraction as well)
        % Then, apply the sigmoid function to get the hidden activation
        % ---- YOUR CODE HERE ----
    
        convolvedImage = sigmoid(convolvedImage+b_mean(featureNum));
        
        
        % ------------------------
        
        % The convolved feature is the sum of the convolved values for all channels
        convolvedFeatures(featureNum, imageNum, :, :) = convolvedImage;
      end
    end
    
    
    end
    function sigm = sigmoid(x)
        sigm = 1./(1+exp(-x));
    end
    
    
    cnnPool.m
    function pooledFeatures = cnnPool(poolDim, convolvedFeatures)
    %cnnPool Pools the given convolved features
    %
    % Parameters:
    %  poolDim - dimension of pooling region
    %  convolvedFeatures - convolved features to pool (as given by cnnConvolve)
    %                      convolvedFeatures(featureNum, imageNum, imageRow, imageCol)
    %
    % Returns:
    %  pooledFeatures - matrix of pooled features in the form
    %                   pooledFeatures(featureNum, imageNum, poolRow, poolCol)
    %                      表示第个featureNum特征与第imageNum张图片的卷积特征池化后的结果保存在矩阵
    %                      pooledFeatures(featureNum, imageNum, :, :)的第poolRow行第poolCol列
    %     
    
    numImages = size(convolvedFeatures, 2);   % 图片数量
    numFeatures = size(convolvedFeatures, 1); % 卷积特征数量
    convolvedDim = size(convolvedFeatures, 3);% 卷积特征维数
    
    pooledFeatures = zeros(numFeatures, numImages, floor(convolvedDim / poolDim), floor(convolvedDim / poolDim));
    
    % -------------------- YOUR CODE HERE --------------------
    % Instructions:
    %   Now pool the convolved features in regions of poolDim x poolDim,
    %   to obtain the 
    %   numFeatures x numImages x (convolvedDim/poolDim) x (convolvedDim/poolDim) 
    %   matrix pooledFeatures, such that
    %   pooledFeatures(featureNum, imageNum, poolRow, poolCol) is the 
    %   value of the featureNum feature for the imageNum image pooled over the
    %   corresponding (poolRow, poolCol) pooling region 
    %   (see http://ufldl/wiki/index.php/Pooling )
    %   
    %   Use mean pooling here.
    % -------------------- YOUR CODE HERE --------------------
    
    resultDim  = floor(convolvedDim / poolDim);
    for imageNum = 1:numImages   % 第imageNum张图片
        for featureNum = 1:numFeatures  % 第featureNum个特征
            for poolRow = 1:resultDim
                offsetRow = 1+(poolRow-1)*poolDim;
                for poolCol = 1:resultDim
                    offsetCol = 1+(poolCol-1)*poolDim;
                    patch = convolvedFeatures(featureNum,imageNum,offsetRow:offsetRow+poolDim-1,...
                        offsetCol:offsetCol+poolDim-1);%取出一个patch
                    pooledFeatures(featureNum,imageNum,poolRow,poolCol) = mean(patch(:));%使用均值pool
                end
            end
        end
    end
    
    
    end
    
    
    
    
    
    
    
    

    参考资料

    UFLDL教程

    http://www.cnblogs.com/tornadomeet/archive/2013/04/09/3009830.html

    http://www.cnblogs.com/tornadomeet/archive/2013/03/25/2980766.html






    ——

  • 相关阅读:
    201521123098 《Java程序设计》 第5周学习总结
    201521123098 《Java程序设计》 第4周学习总结
    201521123098 《Java程序设计》第3周学习总结
    Beta阶段Scrum 冲刺博客合集
    项目复审——Alpha阶段
    事后诸葛亮分析
    展示博客
    测试与发布
    Alpha阶段敏捷冲刺总结
    敏捷冲刺七
  • 原文地址:https://www.cnblogs.com/dmzhuo/p/4969751.html
Copyright © 2011-2022 走看看