zoukankan      html  css  js  c++  java
  • Deep Learning 33:读论文“Densely Connected Convolutional Networks”-------DenseNet 简单理解

    一.读前说明

    1.论文"Densely Connected Convolutional Networks"是现在为止效果最好的CNN架构,比Resnet还好,有必要学习一下它为什么效果这么好.

    2.代码地址:https://github.com/liuzhuang13/DenseNet

    3.这篇论文主要参考了Highway Networks,Residual Networks (ResNets)和GoogLeNet,所以在读本篇论文之前,有必要读一下这几篇论文,另外还可以看一下Very Deep Learning with Highway Networks

    4.参考文献 :ResNet && DenseNet(原理篇)DenseNet模型

    二.阅读笔记 

    Abstract

          最近的一些论文表明,如果卷积神经网络的各层到输入层和输出层的连接更短,那么该网络就大体上可以设计得更深、更准确、训练得更有效。本文基于此提出了“稠密卷积网络(DensNet),该网络每一层均以前馈的形式与其他任一层连接。因此,传统卷积网络有L层就只有L个连接,而DenseNet的任一层不仅与相邻层有连接,而且与它的随后的所有层都有直接连接,所以该网络有L(L+1)/2个直接连接。任意一层的输入都是其前面所有层的特征图,而该层自己的特征图是其随后所有层的输入。DenseNet有以下几个令人激动的优点:1.减轻了梯度消失问题;2.强化了特征传播;3.大幅度减少了参数数量。该网络结构在4个高竞争性的目标识别基准数据集上进行了评估,包括:CIFAR-10,CIFAR-100,SVHN,ImageNet。DenseNet在这些数据集上大部分都获得了巨大的提高,达到目前为止最高的识别准确率。

    1.Introduction

          在视觉识别中,CNN是一种强大的机器学习方法。尽管CNN在20年以前就被提出来,但是只是在最近几年,计算机硬件和网络结构的提高才使得真正的深层CNN的训练变成可能。最开始的LeNet5包含5层,VGG包含19层,只有去年的Highway Networks和ResNets才超过了100层这个关卡。

    三.阅读感想

          翻译了一半,居然感觉完全不用翻译,真接看英文原文也能看懂,嗯对,这篇文章写得通俗易懂,根本不用像看那些什么hiton、begio、yanlecun之类大牛写的文章一样,直接一遍看过去,看得似懂非懂的。看这篇论文看完之后,感觉像吃了蜂蜜一样,看了还想看,连连最后实验结果分析和discuss也写得非常好,特别是discuss中那个图,该文创意非常棒,并且简单,最主要的是该文创意来源就是我最喜欢的那种,就是总结以前很多文章中效果好的原因,找出它们的共性,然后强化这个共性,从而得到更好的结果

    四.DenseNet结构

    1.在CIFAR-10上用训练时的结构DenseNet-BC

    如果depth=40, growth_rate=12, bottleneck=True, reduction=0.5=1-compression,则每个denseblock里面的层数n_layers=((40-4)/3)//2=6.其中//2表示除以2后向下取整。
    注:conv表示正常的2D卷积,CONV表示BN-ReLU-conv
    结构如下:
    input:(32,32,3)
    conv(24,3,3), % 其中conv(24,3,3)=conv(filters=2*growth_rate=24,kernel_size=3,3)

    #第1个dense block
    CONV(48,1,1)-CONV(12,3,3)-merge(36)- % 其中CONV(48,1,1)=CONV(filters=inter_channel = nb_filter*4=48,1,1),merge后nb_filter=24+12=36
    CONV(48,1,1)-CONV(12,3,3)-merge(48)- % 同上,merge后nb_filter=36+12=48
    CONV(48,1,1)-CONV(12,3,3)-merge(60)-

    CONV(48,1,1)-CONV(12,3,3)-merge(72)-
    CONV(48,1,1)-CONV(12,3,3)-merge(84)-
    CONV(48,1,1)-CONV(12,3,3)-merge(96)- % 此时nb_filter每多一层就增加growth_rate=12个,这里1个dense block里有6层,故增加72个,所以nb_falter=24+72=96

    #第1个Transition Layer
    CONV(48,1,1) % nb_filter=nb_filter*compression=96*0.5=48
    AveragePool(2,2,(2,2)) % pool_size=2,2 strides=(2,2)

    #第2个dense block
    CONV(48,1,1)-CONV(12,3,3)-merge(108)- % 其中CONV(48,1,1)=CONV(filters=inter_channel = nb_filter*4=48,1,1),merge后nb_filter=96+12=108
    CONV(48,1,1)-CONV(12,3,3)-merge(120)-
    CONV(48,1,1)-CONV(12,3,3)-merge(132)-
    CONV(48,1,1)-CONV(12,3,3)-merge(144)-
    CONV(48,1,1)-CONV(12,3,3)-merge(156)-
    CONV(48,1,1)-CONV(12,3,3)-merge(168)- % 此时nb_filter每多一层就增加growth_rate=12个,这里1个dense block里有6层,故增加72个,所以nb_falter=96+72=168

    #第2个Transition Layer
    CONV(60,1,1) % nb_filter=nb_filter*compression=120*0.5=60
    AveragePool(2,2,(2,2)) % pool_size=2,2 strides=(2,2)

    #第3个dense block
    CONV(48,1,1)-CONV(12,3,3)-merge(180)- % 其中CONV(48,1,1)=CONV(filters=inter_channel = nb_filter*4=48,1,1)
    CONV(48,1,1)-CONV(12,3,3)-merge(192)-
    CONV(48,1,1)-CONV(12,3,3)-merge(204)-
    CONV(48,1,1)-CONV(12,3,3)-merge(216)-
    CONV(48,1,1)-CONV(12,3,3)-merge(228)-
    CONV(48,1,1)-CONV(12,3,3)-merge(240
    )-
    % 此时nb_filter每多一层就增加growth_rate=12个,这里1个dense block里有6层,故增加72个,所以nb_falter=168+72=240

    Relu-GlobalAveragePool-softmax

    为验证以上的分析,用keras==1.2.0版本验证结果如下:

      1 Model created
      2 ____________________________________________________________________________________________________
      3 Layer (type) Output Shape Param # Connected to 
      4 ====================================================================================================
      5 input_1 (InputLayer) (None, 32, 32, 3) 0 
      6 ____________________________________________________________________________________________________
      7 initial_conv2D (Convolution2D) (None, 32, 32, 24) 648 input_1[0][0] 
      8 ____________________________________________________________________________________________________
      9 batchnormalization_1 (BatchNorma (None, 32, 32, 24) 96 initial_conv2D[0][0] 
     10 ____________________________________________________________________________________________________
     11 activation_1 (Activation) (None, 32, 32, 24) 0 batchnormalization_1[0][0] 
     12 ____________________________________________________________________________________________________
     13 convolution2d_1 (Convolution2D) (None, 32, 32, 48) 1152 activation_1[0][0] 
     14 ____________________________________________________________________________________________________
     15 batchnormalization_2 (BatchNorma (None, 32, 32, 48) 192 convolution2d_1[0][0] 
     16 ____________________________________________________________________________________________________
     17 activation_2 (Activation) (None, 32, 32, 48) 0 batchnormalization_2[0][0] 
     18 ____________________________________________________________________________________________________
     19 convolution2d_2 (Convolution2D) (None, 32, 32, 12) 5184 activation_2[0][0] 
     20 ____________________________________________________________________________________________________
     21 merge_1 (Merge) (None, 32, 32, 36) 0 initial_conv2D[0][0] 
     22 convolution2d_2[0][0] 
     23 ____________________________________________________________________________________________________
     24 batchnormalization_3 (BatchNorma (None, 32, 32, 36) 144 merge_1[0][0] 
     25 ____________________________________________________________________________________________________
     26 activation_3 (Activation) (None, 32, 32, 36) 0 batchnormalization_3[0][0] 
     27 ____________________________________________________________________________________________________
     28 convolution2d_3 (Convolution2D) (None, 32, 32, 48) 1728 activation_3[0][0] 
     29 ____________________________________________________________________________________________________
     30 batchnormalization_4 (BatchNorma (None, 32, 32, 48) 192 convolution2d_3[0][0] 
     31 ____________________________________________________________________________________________________
     32 activation_4 (Activation) (None, 32, 32, 48) 0 batchnormalization_4[0][0] 
     33 ____________________________________________________________________________________________________
     34 convolution2d_4 (Convolution2D) (None, 32, 32, 12) 5184 activation_4[0][0] 
     35 ____________________________________________________________________________________________________
     36 merge_2 (Merge) (None, 32, 32, 48) 0 initial_conv2D[0][0] 
     37 convolution2d_2[0][0] 
     38 convolution2d_4[0][0] 
     39 ____________________________________________________________________________________________________
     40 batchnormalization_5 (BatchNorma (None, 32, 32, 48) 192 merge_2[0][0] 
     41 ____________________________________________________________________________________________________
     42 activation_5 (Activation) (None, 32, 32, 48) 0 batchnormalization_5[0][0] 
     43 ____________________________________________________________________________________________________
     44 convolution2d_5 (Convolution2D) (None, 32, 32, 48) 2304 activation_5[0][0] 
     45 ____________________________________________________________________________________________________
     46 batchnormalization_6 (BatchNorma (None, 32, 32, 48) 192 convolution2d_5[0][0] 
     47 ____________________________________________________________________________________________________
     48 activation_6 (Activation) (None, 32, 32, 48) 0 batchnormalization_6[0][0] 
     49 ____________________________________________________________________________________________________
     50 convolution2d_6 (Convolution2D) (None, 32, 32, 12) 5184 activation_6[0][0] 
     51 ____________________________________________________________________________________________________
     52 merge_3 (Merge) (None, 32, 32, 60) 0 initial_conv2D[0][0] 
     53 convolution2d_2[0][0] 
     54 convolution2d_4[0][0] 
     55 convolution2d_6[0][0] 
     56 ____________________________________________________________________________________________________
     57 batchnormalization_7 (BatchNorma (None, 32, 32, 60) 240 merge_3[0][0] 
     58 ____________________________________________________________________________________________________
     59 activation_7 (Activation) (None, 32, 32, 60) 0 batchnormalization_7[0][0] 
     60 ____________________________________________________________________________________________________
     61 convolution2d_7 (Convolution2D) (None, 32, 32, 48) 2880 activation_7[0][0] 
     62 ____________________________________________________________________________________________________
     63 batchnormalization_8 (BatchNorma (None, 32, 32, 48) 192 convolution2d_7[0][0] 
     64 ____________________________________________________________________________________________________
     65 activation_8 (Activation) (None, 32, 32, 48) 0 batchnormalization_8[0][0] 
     66 ____________________________________________________________________________________________________
     67 convolution2d_8 (Convolution2D) (None, 32, 32, 12) 5184 activation_8[0][0] 
     68 ____________________________________________________________________________________________________
     69 merge_4 (Merge) (None, 32, 32, 72) 0 initial_conv2D[0][0] 
     70 convolution2d_2[0][0] 
     71 convolution2d_4[0][0] 
     72 convolution2d_6[0][0] 
     73 convolution2d_8[0][0] 
     74 ____________________________________________________________________________________________________
     75 batchnormalization_9 (BatchNorma (None, 32, 32, 72) 288 merge_4[0][0] 
     76 ____________________________________________________________________________________________________
     77 activation_9 (Activation) (None, 32, 32, 72) 0 batchnormalization_9[0][0] 
     78 ____________________________________________________________________________________________________
     79 convolution2d_9 (Convolution2D) (None, 32, 32, 48) 3456 activation_9[0][0] 
     80 ____________________________________________________________________________________________________
     81 batchnormalization_10 (BatchNorm (None, 32, 32, 48) 192 convolution2d_9[0][0] 
     82 ____________________________________________________________________________________________________
     83 activation_10 (Activation) (None, 32, 32, 48) 0 batchnormalization_10[0][0] 
     84 ____________________________________________________________________________________________________
     85 convolution2d_10 (Convolution2D) (None, 32, 32, 12) 5184 activation_10[0][0] 
     86 ____________________________________________________________________________________________________
     87 merge_5 (Merge) (None, 32, 32, 84) 0 initial_conv2D[0][0] 
     88 convolution2d_2[0][0] 
     89 convolution2d_4[0][0] 
     90 convolution2d_6[0][0] 
     91 convolution2d_8[0][0] 
     92 convolution2d_10[0][0] 
     93 ____________________________________________________________________________________________________
     94 batchnormalization_11 (BatchNorm (None, 32, 32, 84) 336 merge_5[0][0] 
     95 ____________________________________________________________________________________________________
     96 activation_11 (Activation) (None, 32, 32, 84) 0 batchnormalization_11[0][0] 
     97 ____________________________________________________________________________________________________
     98 convolution2d_11 (Convolution2D) (None, 32, 32, 48) 4032 activation_11[0][0] 
     99 ____________________________________________________________________________________________________
    100 batchnormalization_12 (BatchNorm (None, 32, 32, 48) 192 convolution2d_11[0][0] 
    101 ____________________________________________________________________________________________________
    102 activation_12 (Activation) (None, 32, 32, 48) 0 batchnormalization_12[0][0] 
    103 ____________________________________________________________________________________________________
    104 convolution2d_12 (Convolution2D) (None, 32, 32, 12) 5184 activation_12[0][0] 
    105 ____________________________________________________________________________________________________
    106 merge_6 (Merge) (None, 32, 32, 96) 0 initial_conv2D[0][0] 
    107 convolution2d_2[0][0] 
    108 convolution2d_4[0][0] 
    109 convolution2d_6[0][0] 
    110 convolution2d_8[0][0] 
    111 convolution2d_10[0][0] 
    112 convolution2d_12[0][0] 
    113 ____________________________________________________________________________________________________
    114 batchnormalization_13 (BatchNorm (None, 32, 32, 96) 384 merge_6[0][0] 
    115 ____________________________________________________________________________________________________
    116 activation_13 (Activation) (None, 32, 32, 96) 0 batchnormalization_13[0][0] 
    117 ____________________________________________________________________________________________________
    118 convolution2d_13 (Convolution2D) (None, 32, 32, 96) 9216 activation_13[0][0] 
    119 ____________________________________________________________________________________________________
    120 averagepooling2d_1 (AveragePooli (None, 16, 16, 96) 0 convolution2d_13[0][0] 
    121 ____________________________________________________________________________________________________
    122 batchnormalization_14 (BatchNorm (None, 16, 16, 96) 384 averagepooling2d_1[0][0] 
    123 ____________________________________________________________________________________________________
    124 activation_14 (Activation) (None, 16, 16, 96) 0 batchnormalization_14[0][0] 
    125 ____________________________________________________________________________________________________
    126 convolution2d_14 (Convolution2D) (None, 16, 16, 48) 4608 activation_14[0][0] 
    127 ____________________________________________________________________________________________________
    128 batchnormalization_15 (BatchNorm (None, 16, 16, 48) 192 convolution2d_14[0][0] 
    129 ____________________________________________________________________________________________________
    130 activation_15 (Activation) (None, 16, 16, 48) 0 batchnormalization_15[0][0] 
    131 ____________________________________________________________________________________________________
    132 convolution2d_15 (Convolution2D) (None, 16, 16, 12) 5184 activation_15[0][0] 
    133 ____________________________________________________________________________________________________
    134 merge_7 (Merge) (None, 16, 16, 108) 0 averagepooling2d_1[0][0] 
    135 convolution2d_15[0][0] 
    136 ____________________________________________________________________________________________________
    137 batchnormalization_16 (BatchNorm (None, 16, 16, 108) 432 merge_7[0][0] 
    138 ____________________________________________________________________________________________________
    139 activation_16 (Activation) (None, 16, 16, 108) 0 batchnormalization_16[0][0] 
    140 ____________________________________________________________________________________________________
    141 convolution2d_16 (Convolution2D) (None, 16, 16, 48) 5184 activation_16[0][0] 
    142 ____________________________________________________________________________________________________
    143 batchnormalization_17 (BatchNorm (None, 16, 16, 48) 192 convolution2d_16[0][0] 
    144 ____________________________________________________________________________________________________
    145 activation_17 (Activation) (None, 16, 16, 48) 0 batchnormalization_17[0][0] 
    146 ____________________________________________________________________________________________________
    147 convolution2d_17 (Convolution2D) (None, 16, 16, 12) 5184 activation_17[0][0] 
    148 ____________________________________________________________________________________________________
    149 merge_8 (Merge) (None, 16, 16, 120) 0 averagepooling2d_1[0][0] 
    150 convolution2d_15[0][0] 
    151 convolution2d_17[0][0] 
    152 ____________________________________________________________________________________________________
    153 batchnormalization_18 (BatchNorm (None, 16, 16, 120) 480 merge_8[0][0] 
    154 ____________________________________________________________________________________________________
    155 activation_18 (Activation) (None, 16, 16, 120) 0 batchnormalization_18[0][0] 
    156 ____________________________________________________________________________________________________
    157 convolution2d_18 (Convolution2D) (None, 16, 16, 48) 5760 activation_18[0][0] 
    158 ____________________________________________________________________________________________________
    159 batchnormalization_19 (BatchNorm (None, 16, 16, 48) 192 convolution2d_18[0][0] 
    160 ____________________________________________________________________________________________________
    161 activation_19 (Activation) (None, 16, 16, 48) 0 batchnormalization_19[0][0] 
    162 ____________________________________________________________________________________________________
    163 convolution2d_19 (Convolution2D) (None, 16, 16, 12) 5184 activation_19[0][0] 
    164 ____________________________________________________________________________________________________
    165 merge_9 (Merge) (None, 16, 16, 132) 0 averagepooling2d_1[0][0] 
    166 convolution2d_15[0][0] 
    167 convolution2d_17[0][0] 
    168 convolution2d_19[0][0] 
    169 ____________________________________________________________________________________________________
    170 batchnormalization_20 (BatchNorm (None, 16, 16, 132) 528 merge_9[0][0] 
    171 ____________________________________________________________________________________________________
    172 activation_20 (Activation) (None, 16, 16, 132) 0 batchnormalization_20[0][0] 
    173 ____________________________________________________________________________________________________
    174 convolution2d_20 (Convolution2D) (None, 16, 16, 48) 6336 activation_20[0][0] 
    175 ____________________________________________________________________________________________________
    176 batchnormalization_21 (BatchNorm (None, 16, 16, 48) 192 convolution2d_20[0][0] 
    177 ____________________________________________________________________________________________________
    178 activation_21 (Activation) (None, 16, 16, 48) 0 batchnormalization_21[0][0] 
    179 ____________________________________________________________________________________________________
    180 convolution2d_21 (Convolution2D) (None, 16, 16, 12) 5184 activation_21[0][0] 
    181 ____________________________________________________________________________________________________
    182 merge_10 (Merge) (None, 16, 16, 144) 0 averagepooling2d_1[0][0] 
    183 convolution2d_15[0][0] 
    184 convolution2d_17[0][0] 
    185 convolution2d_19[0][0] 
    186 convolution2d_21[0][0] 
    187 ____________________________________________________________________________________________________
    188 batchnormalization_22 (BatchNorm (None, 16, 16, 144) 576 merge_10[0][0] 
    189 ____________________________________________________________________________________________________
    190 activation_22 (Activation) (None, 16, 16, 144) 0 batchnormalization_22[0][0] 
    191 ____________________________________________________________________________________________________
    192 convolution2d_22 (Convolution2D) (None, 16, 16, 48) 6912 activation_22[0][0] 
    193 ____________________________________________________________________________________________________
    194 batchnormalization_23 (BatchNorm (None, 16, 16, 48) 192 convolution2d_22[0][0] 
    195 ____________________________________________________________________________________________________
    196 activation_23 (Activation) (None, 16, 16, 48) 0 batchnormalization_23[0][0] 
    197 ____________________________________________________________________________________________________
    198 convolution2d_23 (Convolution2D) (None, 16, 16, 12) 5184 activation_23[0][0] 
    199 ____________________________________________________________________________________________________
    200 merge_11 (Merge) (None, 16, 16, 156) 0 averagepooling2d_1[0][0] 
    201 convolution2d_15[0][0] 
    202 convolution2d_17[0][0] 
    203 convolution2d_19[0][0] 
    204 convolution2d_21[0][0] 
    205 convolution2d_23[0][0] 
    206 ____________________________________________________________________________________________________
    207 batchnormalization_24 (BatchNorm (None, 16, 16, 156) 624 merge_11[0][0] 
    208 ____________________________________________________________________________________________________
    209 activation_24 (Activation) (None, 16, 16, 156) 0 batchnormalization_24[0][0] 
    210 ____________________________________________________________________________________________________
    211 convolution2d_24 (Convolution2D) (None, 16, 16, 48) 7488 activation_24[0][0] 
    212 ____________________________________________________________________________________________________
    213 batchnormalization_25 (BatchNorm (None, 16, 16, 48) 192 convolution2d_24[0][0] 
    214 ____________________________________________________________________________________________________
    215 activation_25 (Activation) (None, 16, 16, 48) 0 batchnormalization_25[0][0] 
    216 ____________________________________________________________________________________________________
    217 convolution2d_25 (Convolution2D) (None, 16, 16, 12) 5184 activation_25[0][0] 
    218 ____________________________________________________________________________________________________
    219 merge_12 (Merge) (None, 16, 16, 168) 0 averagepooling2d_1[0][0] 
    220 convolution2d_15[0][0] 
    221 convolution2d_17[0][0] 
    222 convolution2d_19[0][0] 
    223 convolution2d_21[0][0] 
    224 convolution2d_23[0][0] 
    225 convolution2d_25[0][0] 
    226 ____________________________________________________________________________________________________
    227 batchnormalization_26 (BatchNorm (None, 16, 16, 168) 672 merge_12[0][0] 
    228 ____________________________________________________________________________________________________
    229 activation_26 (Activation) (None, 16, 16, 168) 0 batchnormalization_26[0][0] 
    230 ____________________________________________________________________________________________________
    231 convolution2d_26 (Convolution2D) (None, 16, 16, 168) 28224 activation_26[0][0] 
    232 ____________________________________________________________________________________________________
    233 averagepooling2d_2 (AveragePooli (None, 8, 8, 168) 0 convolution2d_26[0][0] 
    234 ____________________________________________________________________________________________________
    235 batchnormalization_27 (BatchNorm (None, 8, 8, 168) 672 averagepooling2d_2[0][0] 
    236 ____________________________________________________________________________________________________
    237 activation_27 (Activation) (None, 8, 8, 168) 0 batchnormalization_27[0][0] 
    238 ____________________________________________________________________________________________________
    239 convolution2d_27 (Convolution2D) (None, 8, 8, 48) 8064 activation_27[0][0] 
    240 ____________________________________________________________________________________________________
    241 batchnormalization_28 (BatchNorm (None, 8, 8, 48) 192 convolution2d_27[0][0] 
    242 ____________________________________________________________________________________________________
    243 activation_28 (Activation) (None, 8, 8, 48) 0 batchnormalization_28[0][0] 
    244 ____________________________________________________________________________________________________
    245 convolution2d_28 (Convolution2D) (None, 8, 8, 12) 5184 activation_28[0][0] 
    246 ____________________________________________________________________________________________________
    247 merge_13 (Merge) (None, 8, 8, 180) 0 averagepooling2d_2[0][0] 
    248 convolution2d_28[0][0] 
    249 ____________________________________________________________________________________________________
    250 batchnormalization_29 (BatchNorm (None, 8, 8, 180) 720 merge_13[0][0] 
    251 ____________________________________________________________________________________________________
    252 activation_29 (Activation) (None, 8, 8, 180) 0 batchnormalization_29[0][0] 
    253 ____________________________________________________________________________________________________
    254 convolution2d_29 (Convolution2D) (None, 8, 8, 48) 8640 activation_29[0][0] 
    255 ____________________________________________________________________________________________________
    256 batchnormalization_30 (BatchNorm (None, 8, 8, 48) 192 convolution2d_29[0][0] 
    257 ____________________________________________________________________________________________________
    258 activation_30 (Activation) (None, 8, 8, 48) 0 batchnormalization_30[0][0] 
    259 ____________________________________________________________________________________________________
    260 convolution2d_30 (Convolution2D) (None, 8, 8, 12) 5184 activation_30[0][0] 
    261 ____________________________________________________________________________________________________
    262 merge_14 (Merge) (None, 8, 8, 192) 0 averagepooling2d_2[0][0] 
    263 convolution2d_28[0][0] 
    264 convolution2d_30[0][0] 
    265 ____________________________________________________________________________________________________
    266 batchnormalization_31 (BatchNorm (None, 8, 8, 192) 768 merge_14[0][0] 
    267 ____________________________________________________________________________________________________
    268 activation_31 (Activation) (None, 8, 8, 192) 0 batchnormalization_31[0][0] 
    269 ____________________________________________________________________________________________________
    270 convolution2d_31 (Convolution2D) (None, 8, 8, 48) 9216 activation_31[0][0] 
    271 ____________________________________________________________________________________________________
    272 batchnormalization_32 (BatchNorm (None, 8, 8, 48) 192 convolution2d_31[0][0] 
    273 ____________________________________________________________________________________________________
    274 activation_32 (Activation) (None, 8, 8, 48) 0 batchnormalization_32[0][0] 
    275 ____________________________________________________________________________________________________
    276 convolution2d_32 (Convolution2D) (None, 8, 8, 12) 5184 activation_32[0][0] 
    277 ____________________________________________________________________________________________________
    278 merge_15 (Merge) (None, 8, 8, 204) 0 averagepooling2d_2[0][0] 
    279 convolution2d_28[0][0] 
    280 convolution2d_30[0][0] 
    281 convolution2d_32[0][0] 
    282 ____________________________________________________________________________________________________
    283 batchnormalization_33 (BatchNorm (None, 8, 8, 204) 816 merge_15[0][0] 
    284 ____________________________________________________________________________________________________
    285 activation_33 (Activation) (None, 8, 8, 204) 0 batchnormalization_33[0][0] 
    286 ____________________________________________________________________________________________________
    287 convolution2d_33 (Convolution2D) (None, 8, 8, 48) 9792 activation_33[0][0] 
    288 ____________________________________________________________________________________________________
    289 batchnormalization_34 (BatchNorm (None, 8, 8, 48) 192 convolution2d_33[0][0] 
    290 ____________________________________________________________________________________________________
    291 activation_34 (Activation) (None, 8, 8, 48) 0 batchnormalization_34[0][0] 
    292 ____________________________________________________________________________________________________
    293 convolution2d_34 (Convolution2D) (None, 8, 8, 12) 5184 activation_34[0][0] 
    294 ____________________________________________________________________________________________________
    295 merge_16 (Merge) (None, 8, 8, 216) 0 averagepooling2d_2[0][0] 
    296 convolution2d_28[0][0] 
    297 convolution2d_30[0][0] 
    298 convolution2d_32[0][0] 
    299 convolution2d_34[0][0] 
    300 ____________________________________________________________________________________________________
    301 batchnormalization_35 (BatchNorm (None, 8, 8, 216) 864 merge_16[0][0] 
    302 ____________________________________________________________________________________________________
    303 activation_35 (Activation) (None, 8, 8, 216) 0 batchnormalization_35[0][0] 
    304 ____________________________________________________________________________________________________
    305 convolution2d_35 (Convolution2D) (None, 8, 8, 48) 10368 activation_35[0][0] 
    306 ____________________________________________________________________________________________________
    307 batchnormalization_36 (BatchNorm (None, 8, 8, 48) 192 convolution2d_35[0][0] 
    308 ____________________________________________________________________________________________________
    309 activation_36 (Activation) (None, 8, 8, 48) 0 batchnormalization_36[0][0] 
    310 ____________________________________________________________________________________________________
    311 convolution2d_36 (Convolution2D) (None, 8, 8, 12) 5184 activation_36[0][0] 
    312 ____________________________________________________________________________________________________
    313 merge_17 (Merge) (None, 8, 8, 228) 0 averagepooling2d_2[0][0] 
    314 convolution2d_28[0][0] 
    315 convolution2d_30[0][0] 
    316 convolution2d_32[0][0] 
    317 convolution2d_34[0][0] 
    318 convolution2d_36[0][0] 
    319 ____________________________________________________________________________________________________
    320 batchnormalization_37 (BatchNorm (None, 8, 8, 228) 912 merge_17[0][0] 
    321 ____________________________________________________________________________________________________
    322 activation_37 (Activation) (None, 8, 8, 228) 0 batchnormalization_37[0][0] 
    323 ____________________________________________________________________________________________________
    324 convolution2d_37 (Convolution2D) (None, 8, 8, 48) 10944 activation_37[0][0] 
    325 ____________________________________________________________________________________________________
    326 batchnormalization_38 (BatchNorm (None, 8, 8, 48) 192 convolution2d_37[0][0] 
    327 ____________________________________________________________________________________________________
    328 activation_38 (Activation) (None, 8, 8, 48) 0 batchnormalization_38[0][0] 
    329 ____________________________________________________________________________________________________
    330 convolution2d_38 (Convolution2D) (None, 8, 8, 12) 5184 activation_38[0][0] 
    331 ____________________________________________________________________________________________________
    332 merge_18 (Merge) (None, 8, 8, 240) 0 averagepooling2d_2[0][0] 
    333 convolution2d_28[0][0] 
    334 convolution2d_30[0][0] 
    335 convolution2d_32[0][0] 
    336 convolution2d_34[0][0] 
    337 convolution2d_36[0][0] 
    338 convolution2d_38[0][0] 
    339 ____________________________________________________________________________________________________
    340 batchnormalization_39 (BatchNorm (None, 8, 8, 240) 960 merge_18[0][0] 
    341 ____________________________________________________________________________________________________
    342 activation_39 (Activation) (None, 8, 8, 240) 0 batchnormalization_39[0][0] 
    343 ____________________________________________________________________________________________________
    344 globalaveragepooling2d_1 (Global (None, 240) 0 activation_39[0][0] 
    345 ____________________________________________________________________________________________________
    346 dense_1 (Dense) (None, 10) 2410 globalaveragepooling2d_1[0][0] 
    347 ====================================================================================================
    348 Total params: 257,218
    349 Trainable params: 249,946
    350 Non-trainable params: 7,272
    351 ____________________________________________________________________________________________________
    352 Finished compiling
    353 Building model...
    View Code

    五.疑问

    1.运行完keras实验之后发现,居然在每个CONV(48,1,1)-CONV(12,3,3)- 后面都有一个Merge,可是在代码中我并没有发现呀,哪里来的?肯定是我看漏了,可是它是从哪来的呢?

    答:原来在dense_block的定义中有这样一句话看掉了:

    1     for i in range(nb_layers):
    2         x = conv_block(x, growth_rate, bottleneck, dropout_rate, weight_decay)
    3         feature_list.append(x)
    4         x = merge(feature_list, mode='concat', concat_axis=concat_axis)
    5         nb_filter += growth_rate

    意思就是在每个这样一个模块后,都要进行Merge,即:就是把每一层的输出都串联在一起,从而组成一个新的tensor。

    2.为什么每个denseblock里面的层数n_layers=((40-4)/3)//2=6.其中//2表示除以2后向下取整?即为什么是减4?

    答:因为该结构中层,除了dense block 中有很多层外,还1个初始的卷积层、2个过渡层、以及1个最后分类输出层。注意:在该论文中,讲的结构深度depth为L,它并不包括输入层在内。

    所以对本论文中的深度depth或L的定义如下:

    a.初始的卷积conv,算作1层;

    b.每个过渡层,算作1层;

    c.每个dense block中的CONV(48,1,1)-CONV(12,3,3)模块,算作2层,即:1个CONV就算作1层;

    d.最后的输出模块Relu-GlobalAveragePool-softmax,算作1层。

    也可这么说:深度就是卷积层的层数加上1个softmax层。

  • 相关阅读:
    代码示例_触摸屏驱动
    代码示例_中断下半部
    代码示例_mmap的实现
    代码示例_阻塞IO
    代码示例_LCD控制
    代码示例_平台总线
    驱动_I2c驱动框架
    驱动_Input输入子系统
    Windows切换桌面或窗口快捷键
    几何分布
  • 原文地址:https://www.cnblogs.com/dmzhuo/p/6219873.html
Copyright © 2011-2022 走看看