zoukankan      html  css  js  c++  java
  • 最长公共上升子序列(LCIS问题)

    题目描述

    ACWing 题目链接

    NOI onlinejudge 题目链接

    Codeforces 10D LCIS

    给定一个长度为 (n) 的序列 (a),一个长度为 (m) 的序列 (b),求他们的最长的公共上升子序列的长度。

    题目分析

    考虑状态设置为最长公共子序列和最长上升子序列的状态"合并"在一起的状态。

    (f[i][j])(a)(i) 个和 (b)(j) 个匹配的最长公共上升子序列以 (b[j]) 结尾的长度。(其实这里设置成 (a[i]) 结尾也可以,只不过为了后面好转移设的是 (b[j])

    转移方程就很好推了:

    [f[i][j]=maxegin{cases}f[i-1][j] (a[i] eq b[j])\ max{f[i-1][k] (1leq k<j&&b[k]<b[j])}+1 (a[i]==b[j])end{cases} ]

    感性理解一下:

    如果 (a[i] eq b[j]) ,则这里转移一定要从 (f[k][j] (1leq k<j)) 的最大值转移而来,因为结尾必须是 (b[j]),所以第二维一定是 (j),第一维的 (k) 显然取 (i-1) 最优,因为前 ((i-1))(a) 一定不如前 (i)(a) 匹配的结果更优。

    如果 (a[i]==b[j]),则从前面选一个 (f[l][k]) 来转移,同上这里 (l)(i-1) 最优,也就是对于一个 (f[i-1][k]),如果 (b[k]<b[j]),则这个 (b[j]) 是可以从这个 (b[k]) 接上来的,但是 (k)(j) 前面有很多取值,所以要全部遍历一遍取值。

    注: 以下复杂度默认 (n,m) 同阶。

    这样的暴力转移是 (mathcal{O}(n^3)) 的,考虑优化:

    首先因为 (a[i]==b[j]),所以里面那个 (max) 可以写成这个形式

    [max{f[i-1][k] (1leq k<j&&b[k]<a[i])}+1 (a[i]==b[j]) ]

    这样就好办了,先枚举 (i) 在枚举 (j) ,在枚举 (j) 的过程中动态更新每一个 (max) 的值,就可以做到 (mathcal{O}(n^2)) 更新。

    具体地:如果枚举到的 (b[j]<a[i]),则为后面的 (j) 更新 (max{f[i-1][k] (1leq k<j&&b[k]<a[i])}),转移的时候直接使用即可。

    值得注意的是,转移方程只用到了 (f[i])(f[i-1]),显然 (i) 这一维可以滚动数组,空间复杂度优化到 (mathcal{O}(n))

    (mathcal{Code})

    ACWing

    #include<iostream>
    #include<cstdio>
    inline int Max(int x, int y) { return x > y ? x : y; }
    inline int read() {
    	int r = 0; bool w = 0; char ch = getchar();
    	while(ch < '0' || ch > '9') {
    		if(ch == '-') w = 1;
    		ch = getchar();
    	}
    	while(ch >= '0' && ch <= '9') {
    		r = (r << 3) + (r << 1) + (ch ^ 48);
    		ch = getchar();
    	}
    	return w ? ~r + 1 : r;
    }
    const int N = 3010; 
    int n, m, ans;
    int a[N], b[N], f[2][N];
    signed main() {
    	n = m = read();
    	for(int i = 1; i <= n; ++i)
    		a[i] = read();
    	for(int i = 1; i <= m; ++i)
    		b[i] = read();
    	for(int i = 1; i <= n; ++i) {
    		int maxx = 0;
    		for(int j = 1; j <= m; ++j) {
    			if(a[i] == b[j]) f[i&1][j] = maxx + 1;
    			else f[i&1][j] = f[!(i&1)][j];
    			if(a[i] > b[j]) maxx = Max(maxx, f[!(i&1)][j]);
    		}
    	}
    	for(int i = 1; i <= m; ++i)
    		ans = Max(ans, f[n&1][i]);
    	printf("%d
    ", ans);
    	return 0; 
    }
    
    

    后两道题还需要再记录路径,这部分的思考留给读者。

  • 相关阅读:
    Hdu 4221 Greedy?
    Hdu 2955 Robberies
    Hdu 3309 Roll The Cube
    Hdu 2602 Bone Collector
    Hdu 2844 Coins
    Hdu 2255奔小康赚大钱
    Hdu 2120 Ice_cream's world I
    Hdu 2159 FATE
    Hdu 2102 A计划
    Hdu 2098分拆素数和
  • 原文地址:https://www.cnblogs.com/do-while-true/p/13777022.html
Copyright © 2011-2022 走看看