zoukankan      html  css  js  c++  java
  • 「题解」Codeforces 1372E Omkar and Last Floor

    orz qyc

    看很多写法都是 (mathcal{O}(n^4)) 的,其实稍微预处理下就能做到 (mathcal{O}(n^3)) 的了。

    并不那么显然地看出是个区间 dp,后面就很好做了。

    发现平方聚在一起是更优的,则区间 dp 应该是枚举一列让它尽可能的多选。

    基于这个贪心的思路,设 (f_{l,r}) 为仅考虑左右端点均在 ([l,r]) 内的段的答案,转移就枚举哪一行是尽可能填的。设 (s_{k,l,r}) 为代表左右端点都在 ([l,r]) 内且经过 (k) 列的区间个数。

    枚举尽可能多选的那一列是第 (k) 列,则有:

    [f_{l,r}=max{f_{l,k-1}+{s_{k,l,r}}^2+f_{k+1,r}} ]

    然后考虑怎样算 (s)

    对于给出的一个段 (x,y),实际上是对所有的 (lleq x,rgeq y,xleq kleq y)(s_{k,l,r}) 都加上 (1)

    也许读者注意到一个细节,(s) 的状态设计中,我将 (k) 放在第一维,实际上是方便对 (mathcal{O}(n^3)) 预处理 (s) 作铺垫。考虑对每个 (k) 建立一个平面直角坐标系,横坐标为 (l),纵坐标为 (r)((l,r)) 上的值为 (s_{k,l,r})

    那么所有满足 (lleq x,rgeq y)((l,r)),构成了一个左上角上的矩形,矩形加最后单点查,可以二维差分解决。

    但实际上都是左上角的矩形,在 ((l,r)) 打个 tag 然后做二维前缀和就完全足够。

    时间复杂度 (mathcal{O(n^3)})

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    typedef long long ll;
    const ll mod = 1000000007;
    template <typename T> T Add(T x, T y) { return (x + y >= mod) ? (x + y - mod) : (x + y); }
    template <typename T> T cAdd(T x, T y) { return x = (x + y >= mod) ? (x + y - mod) : (x + y); }
    template <typename T> T Mul(T x, T y) { return x * y % mod; }
    template <typename T> T Mod(T x) { return x < 0 ? (x + mod) : x; }
    template <typename T> T Max(T x, T y) { return x > y ? x : y; }
    template <typename T> T Min(T x, T y) { return x < y ? x : y; }
    template <typename T> T Abs(T x) { return x < 0 ? -x : x; }
    template <typename T> T chkmax(T &x, T y) { return x = x > y ? x : y; }
    template <typename T>
    T &read(T &r) {
    	r = 0; bool w = 0; char ch = getchar();
    	while(ch < '0' || ch > '9') w = ch == '-' ? 1 : 0, ch = getchar();
    	while(ch >= '0' && ch <= '9') r = (r << 3) + (r <<1) + (ch ^ 48), ch = getchar();
    	return r = w ? -r : r;
    }
    ll qpow(ll x, ll y) {
    	ll sumq = 1;
    	while(y) {
    		if(y & 1) sumq = sumq * x % mod;
    		x = x * x % mod;
    		y >>= 1;
    	}
    	return sumq;
    }
    const int N = 110;
    int n, m;
    int len[N], f[N][N], s[N][N][N];
    signed main() { //freopen("in.txt", "r", stdin); freopen("out.txt", "w", stdout);
    	read(n); read(m);
    	for(int i = 1; i <= n; ++i) {
    		read(len[i]);
    		for(int j = 1; j <= len[i]; ++j) {
    			int x, y; read(x); read(y);
    			for(int k = x; k <= y; ++k)
    				++s[k][x][y];
    		}
    	}
    	for(int k = 1; k <= m; ++k) {
    		for(int l = m; l; --l)
    			for(int r = 1; r <= m; ++r)
    				s[k][l][r] += s[k][l][r-1];
    		for(int l = m; l; --l)
    			for(int r = 1; r <= m; ++r)
    				s[k][l][r] += s[k][l+1][r];
    	}
    	for(int k = 1; k <= m; ++k) f[k][k] = s[k][k][k] * s[k][k][k];
    	for(int len = 1; len < m; ++len)
    		for(int i = 1; i + len <= m; ++i) {
    			int j = i + len;
    			for(int k = i; k <= j; ++k) f[i][j] = Max(f[i][j], f[i][k-1] + s[k][i][j] * s[k][i][j] + f[k+1][j]);
    		}
    	printf("%d
    ", f[1][m]);
    	return 0;
    }
    
  • 相关阅读:
    BZOJ 2400: Spoj 839 Optimal Marks (按位最小割)
    bzoj4873: [Shoi2017]寿司餐厅(最大权闭合子图)
    bzoj1497: [NOI2006]最大获利(最大权闭合子图)
    bzoj1607: [Usaco2008 Dec]Patting Heads 轻拍牛头
    bzoj1024: [SCOI2009]生日快乐
    bzoj2761: [JLOI2011]不重复数字
    bzoj1257: [CQOI2007]余数之和sum
    bzoj2456: mode
    bzoj1831: [AHOI2008]逆序对(DP+双精bzoj1786)
    bzoj2431: [HAOI2009]逆序对数列
  • 原文地址:https://www.cnblogs.com/do-while-true/p/15047858.html
Copyright © 2011-2022 走看看