考虑边权转点权,让边权满足其为相邻点权的异或和,操作变成交换两个点的点权。
随便钦定一个为根,设 (d_i) 为初始时 (i) 的点权,(f_i) 是 (i) 期望得到为多少。如果存在 (d,f),满足它们是相同的集合,就有解。
注意到如果确定了一个点的点权,那么其他所有点权都能唯一的确定。
现在钦定 (f_i) 为 (i) 到根路径上的边权和(或者说钦定 (f_1=0)),注意到任何一组解都能把所有点权异或 (f_1),得到 (f_1=0) 的解,所以判断是否有解就判断 (f_1=0) 的时候是否有解。
现在 (f) 确定了,看是否存在 (d),满足 (d) 和 (f) 是相同的集合。
现在继续钦定 (d_i) 为 (i) 到根路径上边权和,与 (f) 相同,所有可能为答案的 (d') 都是 (d) 异或上一个 (x) 得到的。
那么有解的充分条件就是 ((d_1oplus x)oplus (d_2oplus x)oplus...oplus (d_noplus x)=f_1oplus f_2oplus...oplus f_n),由于 (n) 为奇数,所以可以解出 (x) 是多少。
由于这仅是充分条件,那么最后还要 ( ext{check}) 一下是否合法。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#define pb emplace_back
#define mp std::make_pair
#define fi first
#define se second
typedef long long ll;
typedef std::pair<int, int> pii;
typedef std::pair<ll, int> pli;
typedef std::pair<ll, ll> pll;
typedef std::vector<int> vi;
typedef std::vector<ll> vll;
const ll mod = 998244353;
ll Add(ll x, ll y) { return (x+y>=mod) ? (x+y-mod) : (x+y); }
ll Mul(ll x, ll y) { return x * y % mod; }
ll Mod(ll x) { return x < 0 ? (x + mod) : (x >= mod ? (x-mod) : x); }
ll cadd(ll &x, ll y) { return x = (x+y>=mod) ? (x+y-mod) : (x+y); }
template <typename T> T Max(T x, T y) { return x > y ? x : y; }
template <typename T> T Min(T x, T y) { return x < y ? x : y; }
template <typename T>
T &read(T &r) {
r = 0; bool w = 0; char ch = getchar();
while(ch < '0' || ch > '9') w = ch == '-' ? 1 : 0, ch = getchar();
while(ch >= '0' && ch <= '9') r = r * 10 + (ch ^ 48), ch = getchar();
return r = w ? -r : r;
}
const int N = 100010;
int n, ent, head[N];
int d[N], f[N];
struct Edge {
int next, to, v1, v2;
}e[N << 1];
inline void add(int x, int y, int w1, int w2) {
e[++ent].to = y; e[ent].next = head[x]; e[ent].v1 = w1; e[ent].v2 = w2; head[x] = ent;
}
void dfs(int x, int fa, int h1, int h2) {
d[x] = h1; f[x] = h2;
for(int i = head[x]; i; i = e[i].next) {
int v = e[i].to; if(v == fa) continue ;
dfs(v, x, h1 ^ e[i].v1, h2 ^ e[i].v2);
}
}
signed main() {
read(n);
for(int i = 1; i < n; ++i) {
int u, v, w1, w2; read(u); read(v); read(w1); read(w2);
add(u, v, w1, w2);
add(v, u, w1, w2);
}
dfs(1, 0, 0, 0);
int x = 0;
for(int i = 1; i <= n; ++i) x ^= f[i] ^ d[i];
for(int i = 1; i <= n; ++i) d[i] ^= x;
std::sort(d + 1, d + n + 1);
std::sort(f + 1, f + n + 1);
for(int i = 1; i <= n; ++i)
if(f[i] != d[i]) {
puts("NO");
return 0;
}
puts("YES");
return 0;
}