zoukankan      html  css  js  c++  java
  • 空间数据可视化之ArcLayer详解

    deck-overlay中

    首先使用d3中的scaleQuantile将数据进行分类,scaleQuantile方法是d3中的一种数据分类方法(https://www.cnblogs.com/kidsitcn/p/7182274.html)
    https://raw.githubusercontent.com/uber-common/deck.gl-data/master/examples/arc/counties.json

     

    _getArcs({data, selectedFeature}) {
        if (!data || !selectedFeature) {
          return null;
        }
    
        const {flows, centroid} = selectedFeature.properties;
    
        const arcs = Object.keys(flows).map(toId => {
          const f = data[toId];
          return {
            source: centroid,
            target: f.properties.centroid,
            value: flows[toId]
          };
        });
    
        const scale = scaleQuantile()
          .domain(arcs.map(a => Math.abs(a.value)))
          .range(inFlowColors.map((c, i) => i));
    
        arcs.forEach(a => {
          a.gain = Math.sign(a.value);
          a.quantile = scale(Math.abs(a.value));
        });
    
        return arcs;
      }

    scaleQuantile是一种将连续的值转化成离散的方法,最终离散成这几种颜色分类

    arc-layer中

    这里还是使用了实例化的方法,先添加一堆实例化变量:

    initializeState() {
        const attributeManager = this.getAttributeManager();
    
        /* eslint-disable max-len */
        attributeManager.addInstanced({
          instancePositions: {
            size: 4,
            transition: true,
            accessor: ['getSourcePosition', 'getTargetPosition'],
            update: this.calculateInstancePositions
          },
          instanceSourceColors: {
            size: 4,
            type: GL.UNSIGNED_BYTE,
            transition: true,
            accessor: 'getSourceColor',
            update: this.calculateInstanceSourceColors
          },
          instanceTargetColors: {
            size: 4,
            type: GL.UNSIGNED_BYTE,
            transition: true,
            accessor: 'getTargetColor',
            update: this.calculateInstanceTargetColors
          }
        });
        /* eslint-enable max-len */
      }

    然后是制作图形,这里使用50个点来模拟一条抛物线的效果

    _getModel(gl) {
        let positions = [];
        const NUM_SEGMENTS = 50; // 利用50个点来模拟曲线
        /*
         *  (0, -1)-------------_(1, -1)
         *       |          _,-"  |
         *       o      _,-"      o
         *       |  _,-"          |
         *   (0, 1)"-------------(1, 1)
         */
        for (let i = 0; i < NUM_SEGMENTS; i++) { // 使用三角带的方式来绘制三角形,同时这里的-1和1也是为了在绘制宽度的时候确定法向量的偏移
          positions = positions.concat([i, -1, 0, i, 1, 0]);
        }
    
        const model = new Model(
          gl,
          Object.assign({}, this.getShaders(), {
            id: this.props.id,
            geometry: new Geometry({
              drawMode: GL.TRIANGLE_STRIP,
              attributes: {
                positions: new Float32Array(positions)
              }
            }),
            isInstanced: true,
            shaderCache: this.context.shaderCache // 缓存着色器,我怀疑自己写的hexagon偏慢也跟这个有关系
          })// 绘制物体,这里是5.x的版本在新的版本中还要设定instanceCount参数,来控制绘制实例的数量
        );
    
        model.setUniforms({numSegments: NUM_SEGMENTS});
    
        return model;
      }

    下面是计算一些实例变量,根据data的数量来控制,但是luma好像会默认给实例变量的数组分配大小,实际的value中有一些多余的空间,如果数据量小的话,可能绘制不出来;比如:data有22条线,按照如下计算,instancePositions可用的value就只有88个元素。

    calculateInstancePositions(attribute) {
        const {data, getSourcePosition, getTargetPosition} = this.props;
        const {value, size} = attribute;
        let i = 0;
        for (const object of data) {
          const sourcePosition = getSourcePosition(object);
          const targetPosition = getTargetPosition(object);
          value[i + 0] = sourcePosition[0];
          value[i + 1] = sourcePosition[1];
          value[i + 2] = targetPosition[0];
          value[i + 3] = targetPosition[1];
          i += size;
        }
      }
    
      calculateInstancePositions64Low(attribute) {
        const {data, getSourcePosition, getTargetPosition} = this.props;
        const {value, size} = attribute;
        let i = 0;
        for (const object of data) {
          const sourcePosition = getSourcePosition(object);
          const targetPosition = getTargetPosition(object);
          value[i + 0] = fp64LowPart(sourcePosition[0]);
          value[i + 1] = fp64LowPart(sourcePosition[1]);
          value[i + 2] = fp64LowPart(targetPosition[0]);
          value[i + 3] = fp64LowPart(targetPosition[1]);
          i += size;
        }
      }
    
      calculateInstanceSourceColors(attribute) {
        const {data, getSourceColor} = this.props;
        const {value, size} = attribute;
        let i = 0;
        for (const object of data) {
          const color = getSourceColor(object);
          value[i + 0] = color[0];
          value[i + 1] = color[1];
          value[i + 2] = color[2];
          value[i + 3] = isNaN(color[3]) ? 255 : color[3];
          i += size;
        }
      }
    
      calculateInstanceTargetColors(attribute) {
        const {data, getTargetColor} = this.props;
        const {value, size} = attribute;
        let i = 0;
        for (const object of data) {
          const color = getTargetColor(object);
          value[i + 0] = color[0];
          value[i + 1] = color[1];
          value[i + 2] = color[2];
          value[i + 3] = isNaN(color[3]) ? 255 : color[3];
          i += size;
        }
      }

    着色器代码

    #define SHADER_NAME arc-layer-vertex-shader
    
    attribute vec3 positions; // 几何图形的坐标,同时这里面也编码了一些信息,x代表线段索引,y可以代表偏移方向
    // 本次可用的一些实例变量
    attribute vec4 instanceSourceColors;// 起点的颜色
    attribute vec4 instanceTargetColors; // 终点的颜色
    attribute vec4 instancePositions; // 前两个值记录了起点经纬度,后两个值记录了终点经纬度
    attribute vec3 instancePickingColors;
    
    uniform float numSegments; // 抛物线的线段数量
    uniform float strokeWidth; // 线宽度
    uniform float opacity;
    
    varying vec4 vColor;
    
    // source和target是在3d空间中的单位,ratio代表本此线段在总线段数目的比值范围在0~1,返回值时抛物线高度的平方
    // 这里的方式决定高度单位与source/target的单位保持一致
    float paraboloid(vec2 source, vec2 target, float ratio) {
    
      vec2 x = mix(source, target, ratio); // 获取该线段节点对应的直线位置
      vec2 center = mix(source, target, 0.5);// 取中心点,充分利用glsl内建函数,提升性能
    
      // 抛物线的公式应该是y * y = (source - center)^2 - (x - center)^2;
      float dSourceCenter = distance(source, center);
      float dXCenter = distance(x, center);
      return (dSourceCenter + dXCenter) * (dSourceCenter - dXCenter);
    }
    
    // 在屏幕空间中计算偏移值,最后在反算到裁切空间,也就是ndc空间
    // offset_direction在position的y坐标中记录
    // offset vector by strokeWidth pixels
    // offset_direction is -1 (left) or 1 (right)
    vec2 getExtrusionOffset(vec2 line_clipspace, float offset_direction) {
      // normalized direction of the line
      // ndc空间中的坐标乘以屏幕宽高像素,转换成2维屏幕像素;然后归一化成单位向量
      vec2 dir_screenspace = normalize(line_clipspace * project_uViewportSize);
      // rotate by 90 degrees
      dir_screenspace = vec2(-dir_screenspace.y, dir_screenspace.x); // 求法线向量
    
      // 法向量乘以偏移方向乘以宽度一半获取在屏幕空间中的偏移值
      vec2 offset_screenspace = dir_screenspace * offset_direction * strokeWidth / 2.0;
      // 将屏幕坐标反算到ndc空间
      vec2 offset_clipspace = project_pixel_to_clipspace(offset_screenspace).xy;
    
      return offset_clipspace; // 返回ndc空间的偏移量
    }
    
    float getSegmentRatio(float index) { // 返回线段索引在总线段数目中的比值,转换成0~1之间
      return smoothstep(0.0, 1.0, index / (numSegments - 1.0));
    }
    
    vec3 getPos(vec2 source, vec2 target, float segmentRatio) { // 获取线段节点在三维空间中的位置
      float vertex_height = paraboloid(source, target, segmentRatio); // 获取高度信息
    
      return vec3(
        mix(source, target, segmentRatio), // 获取节点的x/y坐标
        sqrt(max(0.0, vertex_height))// 获取节点的高度坐标
      );
    }
    
    void main(void) {
      // 将insance中编码的起终点的经纬度分别转换成瓦片像素单位
      vec2 source = project_position(instancePositions.xy);
      vec2 target = project_position(instancePositions.zw);
    
      float segmentIndex = positions.x;// 节点的线段索引
      float segmentRatio = getSegmentRatio(segmentIndex);
      // if it's the first point, use next - current as direction
      // otherwise use current - prev
      // 这里处理方式比较巧妙,充分利用内建函数优势;
      // step(edge, x) 作用如: x>=edge ? 1.0 : 0.0
      // 所以上面英文注释所说,如果是起点就使用next-curr,其他的都是用curr - prev
      //float indexDir = mix(-1.0, 1.0, step(segmentIndex, 0.0));
      float indexDir = mix(-1.0, 1.0, (segmentIndex <= 0.0 ? 1.0 : 0.0));
      // 根据indexDir获取下一段或者上一个线段节点的比值
      float nextSegmentRatio = getSegmentRatio(segmentIndex + indexDir);
    
      // 获取两个节点的3维世界坐标并转化成ndc坐标
      vec3 currPos = getPos(source, target, segmentRatio);
      vec3 nextPos = getPos(source, target, nextSegmentRatio);
      vec4 curr = project_to_clipspace(vec4(currPos, 1.0));
      vec4 next = project_to_clipspace(vec4(nextPos, 1.0));
    
      // extrude
      // 进行线宽拉伸,获取法线方向的偏移
      vec2 offset = getExtrusionOffset((next.xy - curr.xy) * indexDir, positions.y);
      gl_Position = curr + vec4(offset, 0.0, 0.0); // 获取最终节点的ndc位置
    
      // 根据线段节点位置计算颜色插值
      vec4 color = mix(instanceSourceColors, instanceTargetColors, segmentRatio) / 255.;
      vColor = vec4(color.rgb, color.a * opacity);// 获取最终颜色
    
      // Set color to be rendered to picking fbo (also used to check for selection highlight).
      picking_setPickingColor(instancePickingColors);
    }
  • 相关阅读:
    实验 1:Mininet 源码安装和可视化拓扑工具
    ORACLE 数据库异常关闭处理办法
    Tomcat安装及配置教程
    关于Eclipse无server选项的解决方法
    2020软件工程作业02
    2020软件工程作业01
    C语言II作业01
    C语言总体概览
    C语言寒假大作战04
    C语言寒假大作战03
  • 原文地址:https://www.cnblogs.com/dojo-lzz/p/10129152.html
Copyright © 2011-2022 走看看