思路:经典的dp题目,应该是新建一个dp表,dp[i][j]表示从左上角到grid[i][j]的最短路径,因为只能往下和往右走,因此dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j],经过压缩后可以使用一维的dp表,但是更新每个dp[i][j]只需要用到当前的grid[i][j],因此可以就把grid作为dp表,不用另外申请变量。
class Solution(object):
def minPathSum(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
row = len(grid)
col = len(grid[0])
# dp = grid
for i in range(1,row):
grid[i][0] += grid[i-1][0]
for i in range(1, col):
grid[0][i] += grid[0][i-1]
for i in range(1, row):
for j in range(1, col):
grid[i][j] = min(grid[i-1][j], grid[i][j-1]) + grid[i][j]
return grid[row-1][col-1]