zoukankan      html  css  js  c++  java
  • USACO section 1.5.1 Number Triangles

    1. 动态规划,f[i,j]=Max{f[i+1,j],f[i+1,j+1]}+a[i,j] (1<=i<=n-1,1<=j<=i)复杂度是o(n^2)。

    2. 以下是代码:

    /*
    ID: dollar4
    PROG: numtri
    LANG: C++
    */
    #include <iostream>
    #include <fstream>
    #include <string>
    #include <algorithm>
    #include <cstring>
    
    using namespace std;
    long long num[1010][1010];
    long max(long a, long b)
    {
        if (a > b)
            return a;
        else return b;
    }
    int main()
    {
        ofstream fout ("numtri.out");
        ifstream fin ("numtri.in");
    
        int n, i, j;
        fin >> n;
        for (i = 0; i < n; i++)
            for (j = 0; j <= i; j++)
                fin >> num[i][j];
        for (i = n - 2; i >= 0; i--)
            for (j = 0; j <= i; j++)
                num[i][j] += max(num[i+1][j], num[i+1][j+1]);
        fout << num[0][0] << endl;
        return 0;
    }
    


    3. 第一次用了BFS做,果断超时,下边是BFS代码:

    /*
    ID: dollar4
    PROG: numtri
    LANG: C++
    */
    #include <iostream>
    #include <fstream>
    #include <string>
    #include <algorithm>
    #include <cstring>
    #include <queue>
    
    using namespace std;
    int num[1010][1010], ans[1010][1010];
    int n;
    struct Node
    {
        int x, y;
    } node;
    queue<Node> q;
    void bfs(Node nod)
    {
        q.push(nod);
        Node next1, next2, temp;
        while (!q.empty())
        {
            temp = q.front();
            q.pop();
            if (temp.y + 1 < n)
            {
                next1.x = temp.x + 1;
                next1.y = temp.y;
                next2.x = temp.x + 1;
                next2.y = temp.y + 1;
                q.push(next1);
                q.push(next2);
                if (ans[next1.x][next1.y] < ans[temp.x][temp.y] + num[next1.x][next1.y])
                    ans[next1.x][next1.y] = ans[temp.x][temp.y] + num[next1.x][next1.y];
                if (ans[next2.x][next2.y] = ans[temp.x][temp.y] + num[next2.x][next2.y])
                    ans[next2.x][next2.y] = ans[temp.x][temp.y] + num[next2.x][next2.y];
            }
            else break;
        }
        return;
    }
    
    int main()
    {
        ofstream fout ("numtri.out");
        ifstream fin ("numtri.in");
        memset(num, 0, sizeof(num));
        int i, j;
        fin >> n;
        for (i = 0; i < n; i++)
            for (j = 0; j <= i; j++)
                fin >> num[i][j];
        Node start;
        start.x = 0;
        start.y = 0;
        ans[0][0] = num[0][0];
        bfs(start);
        for (i = 0; i < n; i++)
        {
            for (j = 0; j <= i; j++)
                cout << ans[i][j] << ' ';
            cout << endl;
        }
    
    
        int output = ans[0][0];
        for (i = 0; i < n; i++)
            for (j = 0; j <= i; j++)
            {
                if (output < ans[i][j])
                    output = ans[i][j];
            }
        fout << output << endl;
        return 0;
    }
    

    4. 官方参考代码

    We keep track (in the "best" array) of total for the best path ending in a given column of the triangle. Viewing the input, a path through the triangle always goes down or down and to the right. To process a new row, the best path total ending at a given column is the maximum of the best path total ending at that column or the one to its left, plus the number in the new row at that column. We keep only the best totals for the current row (in "best") and the previous row (in "oldbest").

    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    #include <assert.h>
    
    #define MAXR 1000
    
    int
    max(int a, int b)
    {
    	return a > b ? a : b;
    }
    
    void
    main(void)
    {
    	int best[MAXR], oldbest[MAXR];
    	int i, j, r, n, m;
    	FILE *fin, *fout;
    
    	fin = fopen("numtri.in", "r");
    	assert(fin != NULL);
    	fout = fopen("numtri.out", "w");
    	assert(fout != NULL);
    
    	fscanf(fin, "%d", &r);
    
    	for(i=0; i<MAXR; i++)
    		best[i] = 0;
    
    	for(i=1; i<=r; i++) {
    		memmove(oldbest, best, sizeof oldbest);
    		for(j=0; j<i; j++) {
    			fscanf(fin, "%d", &n);
    			if(j == 0)
    				best[j] = oldbest[j] + n;
    			else
    				best[j] = max(oldbest[j], oldbest[j-1]) + n;
    		}
    	}
    
    	m = 0;
    	for(i=0; i<r; i++)
    		if(best[i] > m)
    			m = best[i];
    
    	fprintf(fout, "%d\n", m);
    	exit(0);
    }


  • 相关阅读:
    c语言 作用域、存储期、链接属性汇总
    进程上下文切换分析
    进程装载过程分析(execve系统调用分析)
    fork 创建进程的过程分析
    系统调用软中断处理程序system_call分析
    linux 系统调用分析
    8分钟带你深入浅出搞懂Nginx
    控制反转
    JAVA泛型(转)
    AOP(转)
  • 原文地址:https://www.cnblogs.com/dollarzhaole/p/3188911.html
Copyright © 2011-2022 走看看