zoukankan      html  css  js  c++  java
  • 5.聚类算法-kmeans

    1.原理

    K-Means算法的思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。

    2、api

    3、性能评估

     

     越接近1越好,一般不超过0.7

     

    4、优缺点

    优点 
    1)原理比较简单,实现也是很容易,收敛速度快。 
    2)聚类效果较优。 
    3)算法的可解释度比较强。 
    4)主要需要调参的参数仅仅是簇数k。

    缺点 
    1)K值的选取不好把握 
    2)对于不是凸的数据集比较难收敛 
    3)如果各隐含类别的数据不平衡,比如各隐含类别的数据量严重失衡,或者各隐含类别的方差不同,则聚类效果不佳。 
    4) 最终结果和初始点的选择有关,容易陷入局部最优。
    5) 对噪音和异常点比较的敏感。

    5、总结

  • 相关阅读:
    React 构建方法总结
    集思广益 (一)
    C#方法调用
    C# Hello World 实例
    C# 环境
    C# 简介
    对象类型的本地写入---plist文件创建以及读取
    正则判断 手机邮箱的正确格式
    数组去重
    Base64编码
  • 原文地址:https://www.cnblogs.com/dominik/p/13770261.html
Copyright © 2011-2022 走看看