21、栈的压入和弹出序列
新建一个栈,将数组A压入栈中,当栈顶元素等于数组B时,就将其出栈,当循环结束时,判断栈是否为空,若为空则返回true.
class Solution: def IsPopOrder(self, pushV, popV): # write code here if len(pushV) != len(popV): return False stack = [] for i in pushV: stack.append(i) # print(stack[-1], popV[0]) while len(stack) != 0 and stack[-1] == popV[0]: # t = stack.pop() stack.pop() popV.pop(0) # print(t) return len(stack) == 0 s = Solution() push1 = [1, 2, 3, 4, 5] pop1 = [4, 5, 3, 2, 1] pop2 = [4, 5, 3, 1, 3] print(s.IsPopOrder(push1, pop1)) # true print(s.IsPopOrder(push1, pop2)) # False
22、从上往下打印二叉树:
从根节点开始依次把每一层的树节点值放入v中,同时把该树节点的子节点放入p中。按前面的操作,直到p为空。(层序遍历二叉树)
class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: # 返回从上到下每个节点值列表,例:[1,2,3] def PrintFromTopToBottom(self, root): # write code here p = [] v = [] if root: p.append(root) while p: v.append(p[0].val) if p[0].left: p.append(p[0].left) if p[0].right: p.append(p[0].right) p.pop(0) return v s = Solution() tree1 = TreeNode(1) t1 = TreeNode(6) t2 = TreeNode(8) t3 = TreeNode(4) t4 = TreeNode(5) tree1.left = t1 tree1.right = t2 t1.left = t3 t3.right = t4 t5 = TreeNode(14) t6 = TreeNode(12) t7 = TreeNode(16) t2.right = t5 t5.left = t6 t5.right = t7 print(s.PrintFromTopToBottom(tree1))
23、二叉搜索树的后序遍历序列
后序遍历 的序列中,最后一个数字是树的根节点 ,数组中前面的数字可以分为两部分:第一部分是左子树节点 的值,都比根节点的值小;第二部分 是右子树 节点的值,都比 根 节点 的值大,后面用递归分别判断前后两部分 是否 符合以上原则
# -*- coding:utf-8 -*- class Solution: def VerifySquenceOfBST(self, sequence): # write code here if len(sequence) == 0: return False l = len(sequence) root = sequence[l - 1] for i in range(l): if sequence[i] > root: break for j in range(i, l): if sequence[j] < root: return False left = True right = True if i > 0: left = self.VerifySquenceOfBST(sequence[0:i]) if i < l - 1: right = self.VerifySquenceOfBST(sequence[i:l - 1]) return left and right s = Solution() sp = [5, 4, 6, 12, 16, 14, 8, 7] sp1 = [7, 6, 8, 4, 14, 5, 12, 16] print(s.VerifySquenceOfBST(sp)) print(s.VerifySquenceOfBST(sp1))