zoukankan      html  css  js  c++  java
  • 数据结构 之树

    树的概念

      树(tree) 是一种抽象的数据类型(ADT) 获知实作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合。它是由 n n(n>=1) 个有限节点组成一个具有层次关系的集合。把它叫做“树” 是因为它看起来像一棵树,也就是根朝上,而叶朝下的。它具有以下特点:

    • 每个节点有0 个或多个子节点
    • 没有父节点的节点称为根节点
    • 每一个非根节点有且具有一个父节点
    • 除了根节点,每个子节点可以分为多个不相交的子树

    相关术语

    节点的度:一个节点含有的子树的个数称为该节点的度;
     
    叶节点或终端节点:度为0的节点称为叶节点;
     
    非终端节点或分支节点:度不为0的节点;
     
    双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点;
     
    孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点;
     
    兄弟节点:具有相同父节点的节点互称为兄弟节点;
     
    树的度:一棵树中,最大的节点的度称为树的度;
     
    节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
     
    树的高度或深度:树中节点的最大层次;
     
    堂兄弟节点:双亲在同一层的节点互为堂兄弟;
     
    节点的祖先:从根到该节点所经分支上的所有节点;
     
    子孙:以某节点为根的子树中任一节点都称为该节点的子孙。
     
    森林:由m(m>=0)棵互不相交的树的集合称为森林;

     树的种类

    二叉树

      在计算机科学中,二叉树是每个结点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。
     
      一棵深度为k,且有2^k-1个节点的二叉树,称为满二叉树。这种树的特点是每一层上的节点数都是最大节点数。而在一棵二叉树中,除最后一层外,若其余层都是满的,并且最后一层或者是满的,或者是在右边缺少连续若干节点,则此二叉树为完全二叉树。具有n个节点的完全二叉树的深度为floor(log2n)+1。深度为k的完全二叉树,至少有2k-1个叶子节点,至多有2k-1个节点

    树的存储

    常见使用场景

    二叉树创建

    class Node(object):
        def __init__(self,item):
            self.elem = item
            self.lchild = None
            self.rchild = None
    
    class Tree(object):
        """二叉树"""
        def __init__(self):
            self.root = None

    1. 添加节点:

        def add(self,item):
            node = Node(item)
            if self.root is None:
                self.root = node
                return
            queue = [self.root]
            while queue:
                cur_node = queue.pop(0)
                if cur_node.lchild is None:
                    cur_node.lchild = node
                    return
                else:
                    queue.append(cur_node.lchild)
    
                if cur_node.rchild is None:
                    cur_node.rchild = node
                    return
                else:
                    queue.append(cur_node.rchild)

    2. 广度遍历

        def bread_travel(self):
            """广度遍历"""
            if self.root is None:
                return
            queue = [self.root]
            while queue:
                cur_node = queue.pop(0)
                print(cur_node.elem)
                if cur_node.lchild is not None:
                    queue.append(cur_node.lchild)
    
                if cur_node.rchild is not None:
                    queue.append(cur_node.rchild)

    3. 前序,中序,后序遍历

        def preorder(self,node):
            if node is None:
                return
            print(node.elem, end='  ')
            self.preorder(node.lchild)
            self.preorder(node.rchild)
    
    
        def inorder(self,node):
            if node is None:
                return
            self.inorder(node.lchild)
            print(node.elem, end='  ')
            self.inorder(node.rchild)
    
        def lastorder(self,node): 
            if node is None:
                return
            self.lastorder(node.lchild)
            self.lastorder(node.rchild)
            print(node.elem,end='  ')

    后序: 左子树    - >  右子树  ->   根节点

    中序: 左子树    - >  根节点  ->  右子树

    前序: 根节点    ->   左子树  ->  右子树

  • 相关阅读:
    mysql_wp_replication_tutorial
    Procedure execution failed 2013
    [Err] 1136
    innodb_flush_log_at_trx_commit和sync_binlog 参数说明
    mysql没有oracle 那样一次性把data buffer 数据写入磁盘
    Caused by: org.springframework.beans.factory.BeanCreationException: Could not autowire field
    MyEclipse之Widget is disposed
    Caused by: com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: Query was empty
    An internal error occurred during: "Building workspace". GC overhead limit exceeded
    Oracle 内部复制文档解读
  • 原文地址:https://www.cnblogs.com/donghaoblogs/p/10548558.html
Copyright © 2011-2022 走看看