Prime Ring Problem
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 12758 Accepted Submission(s): 5785
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
![](http://acm.hdu.edu.cn/data/images/1016-1.gif)
Note: the number of first circle should always be 1.
![](http://acm.hdu.edu.cn/data/images/1016-1.gif)
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6 8
Sample Output
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2
1 // 1:当n为奇数的时候, 肯定没有符合条件的:2:符合条件的排列相邻的数字的奇偶性肯定不同; 2 3 #include<stdio.h> 4 #include<string.h> 5 6 int used[20],prime[40],path[20]; 7 void DFS(int num,int n) 8 { 9 int i; 10 if(num>n&&prime[path[n]+path[1]])//判断第一个和最后一个数是否匹配 11 { 12 for(i=0;i<n;++i) 13 printf(i?" %d":"%d",path[i+1]); 14 printf("\n"); 15 return; 16 } 17 for(i=2;i<=n;++i)//生成开头数字为1的所有排列 18 { 19 if(!used[i]&&prime[path[num-1]+i])//如果相邻两个数的和为素数,继续 20 { 21 used[i]=1;//将i标记为已用; 22 path[num]=i; 23 DFS(num+1,n); 24 used[i]=0;//恢复原始状态 25 } 26 } 27 } 28 29 int main() 30 { 31 int n,num=1; 32 prime[2]=prime[3]=prime[5]=prime[7]=prime[11]=prime[13]=prime[17]=prime[19]= 33 prime[23]=prime[29]=prime[31]=prime[37]=1; 34 path[1]=1; 35 while(scanf("%d",&n)!=EOF) 36 { 37 printf("Case %d:\n",num++); 38 if(n%2==0)//当n为奇数时,肯定不符合条件; 39 { 40 memset(used,0,sizeof(used)); 41 DFS(2,n);//从第二个数开始搜索 42 } 43 printf("\n"); 44 } 45 }