最短路径问题
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5982 Accepted Submission(s): 1803
Problem Description
给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。
Input
输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)
(1<n<=1000, 0<m<100000, s != t)
Output
输出 一行有两个数, 最短距离及其花费。
Sample Input
3 2
1 2 5 6
2 3 4 5
1 3
0 0
Sample Output
9 11
这道题不仅仅要考虑最短路径,还要在最短路的前提下考虑消费最少,代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = 1000 + 10;
const int MAX = 0xfffffff;
int map[N][N], cost[N][N];
int min_dis, min_cost;
void Dijkstra(int s, int t, int n)
{
int dis[N], cost1[N];
bool visit[N];
memset(visit, false, sizeof(visit));
for(int i = 1; i <= N; ++i)
{
dis[i] = map[s][i];
cost1[i] = cost[s][i];
}
dis[s] = 0;
visit[s] = true;
for(int i = 1; i < n; ++i)
{
int min = MAX;
int k;
for(int j = 1; j <= n; ++j)
{
if(!visit[j] && min > dis[j])
{
min = dis[j];
k = j;
}
}
visit[k] = true;
for(int j = 1; j <= n; ++j)
{
if(!visit[j] && dis[j] > min + map[k][j])
{
dis[j] = min + map[k][j];
cost1[j] = cost[k][j] + cost1[k];
}
else if(!visit[j] && dis[j] == min + map[k][j] && cost1[j] > cost[k][j] + cost1[k])
{
cost1[j] = cost[k][j] + cost1[k];
}
}
if(visit[t])
{
min_dis = dis[t];
min_cost = cost1[t];
return ;
}
}
min_dis = dis[t];
min_cost = cost1[t];
}
int main()
{
int n, m;
while(scanf("%d %d", &n, &m) && (m || n))
{
for(int i = 1; i <= n; ++i)
for(int j = 1; j <i; ++j)
{
map[i][j] = map[j][i] = MAX;
cost[i][j] = cost[j][i] = MAX;
}
while(m--)
{
int a, b, d, p;
scanf("%d%d%d%d", &a, &b, &d, &p);
if(map[a][b] > d)
{
map[a][b] = map[b][a] = d;
cost[a][b] = cost[b][a] = p;
}
}
int s, t;
scanf("%d%d", &s, &t);
Dijkstra(s, t, n);
printf("%d %d\n", min_dis, min_cost);
}
return 0;
}