最短路径问题
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5982 Accepted Submission(s): 1803
Problem Description
给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。
Input
输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)
(1<n<=1000, 0<m<100000, s != t)
Output
输出 一行有两个数, 最短距离及其花费。
Sample Input
3 2
1 2 5 6
2 3 4 5
1 3
0 0
Sample Output
9 11
这道题不仅仅要考虑最短路径,还要在最短路的前提下考虑消费最少,代码如下:
#include <iostream> #include <cstdio> #include <cstring> using namespace std; const int N = 1000 + 10; const int MAX = 0xfffffff; int map[N][N], cost[N][N]; int min_dis, min_cost; void Dijkstra(int s, int t, int n) { int dis[N], cost1[N]; bool visit[N]; memset(visit, false, sizeof(visit)); for(int i = 1; i <= N; ++i) { dis[i] = map[s][i]; cost1[i] = cost[s][i]; } dis[s] = 0; visit[s] = true; for(int i = 1; i < n; ++i) { int min = MAX; int k; for(int j = 1; j <= n; ++j) { if(!visit[j] && min > dis[j]) { min = dis[j]; k = j; } } visit[k] = true; for(int j = 1; j <= n; ++j) { if(!visit[j] && dis[j] > min + map[k][j]) { dis[j] = min + map[k][j]; cost1[j] = cost[k][j] + cost1[k]; } else if(!visit[j] && dis[j] == min + map[k][j] && cost1[j] > cost[k][j] + cost1[k]) { cost1[j] = cost[k][j] + cost1[k]; } } if(visit[t]) { min_dis = dis[t]; min_cost = cost1[t]; return ; } } min_dis = dis[t]; min_cost = cost1[t]; } int main() { int n, m; while(scanf("%d %d", &n, &m) && (m || n)) { for(int i = 1; i <= n; ++i) for(int j = 1; j <i; ++j) { map[i][j] = map[j][i] = MAX; cost[i][j] = cost[j][i] = MAX; } while(m--) { int a, b, d, p; scanf("%d%d%d%d", &a, &b, &d, &p); if(map[a][b] > d) { map[a][b] = map[b][a] = d; cost[a][b] = cost[b][a] = p; } } int s, t; scanf("%d%d", &s, &t); Dijkstra(s, t, n); printf("%d %d\n", min_dis, min_cost); } return 0; }