zoukankan      html  css  js  c++  java
  • NYOJ234 吃土豆

     

    吃土豆

    时间限制:1000 ms  |  内存限制:65535 KB
    难度:4
     
    描述
    Bean-eating is an interesting game, everyone owns an M*N matrix, which is filled with different qualities beans. Meantime, there is only one bean in any 1*1 grid. Now you want to eat the beans and collect the qualities, but everyone must obey by the following rules: if you eat the bean at the coordinate(x, y), you can’t eat the beans anyway at the coordinates listed (if exiting): (x, y-1), (x, y+1), and the both rows whose abscissas are x-1 and x+1.


    Now, how much qualities can you eat and then get ?
     
    输入
    There are a few cases. In each case, there are two integer M (row number) and N (column number). The next M lines each contain N integers, representing the qualities of the beans. We can make sure that the quality of bean isn't beyond 1000, and 1<=M,N<=500.
    输出
    For each case, you just output the MAX qualities you can eat and then get.
    样例输入
    4 6
    11 0 7 5 13 9
    78 4 81 6 22 4
    1 40 9 34 16 10
    11 22 0 33 39 6
    样例输出
    242
    来源
    2009 Multi-University Training Contest 4
     
    题解:
    仔细想想,其实这道题横坐标和纵坐标的状态是一样的,
    对于取点(i, j):
        则在列上,不能取旁边相邻的两列,即 j-1 列和 j+1 列;
        同理,在行上,不能取旁边相邻的两行,即 i-1 行和 i+1 行。
    所以,可以对行和列单独考虑:
        对于列级状态转移方程: map[i][j] = max (map[i][j-2],map[i][j-3]);
        对于行级状态转移方程: dp[i] = max(dp[i-2], dp[i-3]) + max( map[i][n-1], map[i][n]);(假定一共有n列)
    参考 :http://www.cnblogs.com/A-way/archive/2013/05/08/3066236.html
     1 #include <cstdio>
     2 #include <iostream>
     3 #include <cstring>
     4 
     5 using namespace std;
     6 
     7 int main()
     8 {
     9     int n, m;
    10     int map[505][505], dp[505]; 
    11     
    12     while(~scanf("%d%d", &n, &m))
    13     {
    14         memset(map, 0, sizeof(map));
    15         memset(dp, 0, sizeof(dp));
    16         
    17         for(int i = 3; i < n+3; ++i)
    18             for(int j = 3; j < m+3; ++j)
    19             {
    20                 scanf("%d", &map[i][j]);
    21                 map[i][j] += max(map[i][j-2], map[i][j-3]);
    22             }
    23         
    24         for(int i = 3; i < n+3; ++i)
    25             dp[i] = max(dp[i-2], dp[i-3]) + max(map[i][m+1], map[i][m+2]);
    26         printf("%d\n", dp[n+2]);
    27     }
    28     return 0;
    29 }
  • 相关阅读:
    The Preliminary Contest for ICPC China Nanchang National Invitational and International Silk-Road Programming Contest
    HDU 5299 Circles Game
    UVALive
    算法笔记--匈牙利算法
    算法笔记--Splay && Link-Cut-Tree && fhq _treap
    P2685 [TJOI2012]桥
    2017-2018 ACM-ICPC German Collegiate Programming Contest (GCPC 2017)
    ACM-ICPC2018南京赛区 Mediocre String Problem
    Project Euler 345: Matrix Sum
    算法笔记--manacher算法
  • 原文地址:https://www.cnblogs.com/dongsheng/p/3098451.html
Copyright © 2011-2022 走看看