Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 7923 | Accepted: 3142 |
Description
Let x and y be two strings over some finite alphabet A. We would like to transform x into y allowing only operations given below:
- Deletion: a letter in x is missing in y at a corresponding position.
- Insertion: a letter in y is missing in x at a corresponding position.
- Change: letters at corresponding positions are distinct
Certainly, we would like to minimize the number of all possible operations.
IllustrationA G T A A G T * A G G C
| | | | | | |
A G T * C * T G A C G CDeletion: * in the bottom line
Insertion: * in the top line
Change: when the letters at the top and bottom are distinct
This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like
A G T A A G T A G G C
| | | | | | |
A G T C T G * A C G C
and 4 moves would be required (3 changes and 1 deletion).
In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is n where n ≥ m.
Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.
Write a program that would minimize the number of possible operations to transform any string x into a string y.
Input
The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.
Output
An integer representing the minimum number of possible operations to transform any string x into a string y.
Sample Input
10 AGTCTGACGC 11 AGTAAGTAGGC
Sample Output
4
Source
解析:
第三届软件大赛决赛中关于核苷酸 变换的问题解析http://blog.csdn.net/kuaisuzhuceh/article/details/8680799如下(同样也适用于该题);
状态转移方程:
有三种情况可以导致我们上面设计的状态会发生转移。我们现在来看A[i] 和 B[j] ,
①、我们可以在 B[j]后面插入一个核苷酸(即一个字符)ch,ch==A[i],这样做的话,
至少需要 dp[i - 1][j] + 1步操作,即 dp[i][j] = dp[i - 1][j] + 1。
②、我们可以删除 B[j],这样的话,B[1...j] 变为A[1...i] 需要 dp[i][j - 1]步,
即 dp[i][j] = dp[i][j - 1] + 1。
③、我们也可以考虑修改 B[j],使它变为A[j],但是如果 B[j]本来就等于 A[i]的话,
那修改其实相当于用了 0步,如果 B[j] != A[i] 的话,那修改相当于用了 1步。
所以 dp[i][j] = dp[i - 1][j - 1] + (A[i] == B[j] ? 0, 1)。
决策:
决策就很简单了,从上面三种状态转移中选择一个最小值就可以了。
处理边界:
处理好边界非常重要,这里需要注意的是对dp[0][0....m],dp[0.....n][0]的初始化,
可以这样看,dp[0][i],就是说A[1...n]是一个空串,而B[1...m]十个长度为i的串,
很显然B串变为A串就是删除i个核苷酸。
1 #include <cstdio> 2 #include <iostream> 3 #include <cstring> 4 5 using namespace std; 6 7 int len1, len2; 8 int dp[1005][1005];// dp[i][j] 表示 s1[0...i-1]变换到 s2[0...j-1] 的最短编辑距离 9 char s1[1005], s2[1005]; 10 11 inline int min(int a, int b) 12 { 13 return a < b ? a : b; 14 } 15 16 inline int max(int a, int b) 17 { 18 return a > b ? a : b; 19 } 20 21 void init() 22 { 23 memset(dp, 0, sizeof(dp)); 24 int tmp = max(len1, len2); 25 for(int i = 1; i <= tmp; ++i) // 注意初始化 26 { 27 dp[i][0] = dp[0][i] = i; 28 } 29 } 30 31 int DP() 32 { 33 for(int i = 0; i < len1; ++i) 34 for(int j = 0; j < len2; ++j) 35 { 36 if(s1[i] == s2[j]) 37 dp[i+1][j+1] = min(min(dp[i+1][j]+1, dp[i][j+1]+1), dp[i][j]); 38 else 39 dp[i+1][j+1] = min(min(dp[i+1][j]+1, dp[i][j+1]+1), dp[i][j]+1); 40 } 41 return dp[len1][len2]; 42 } 43 44 int main() 45 { 46 while(cin >> len1 >> s1) 47 { 48 cin >> len2 >> s2; 49 init(); 50 cout << DP() << endl; 51 } 52 return 0; 53 }