zoukankan      html  css  js  c++  java
  • POJ3356 AGTC (最短编辑距离问题)

    AGTC
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 7923   Accepted: 3142

    Description

    Let x and y be two strings over some finite alphabet A. We would like to transform x into y allowing only operations given below:

    • Deletion: a letter in x is missing in y at a corresponding position.
    • Insertion: a letter in y is missing in x at a corresponding position.
    • Change: letters at corresponding positions are distinct

    Certainly, we would like to minimize the number of all possible operations.

    Illustration
    A G T A A G T * A G G C
    | | | | | | |
    A G T * C * T G A C G C

    Deletion: * in the bottom line
    Insertion: * in the top line
    Change: when the letters at the top and bottom are distinct

    This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like

    A  G  T  A  A  G  T  A  G  G  C
    | | | | | | |
    A G T C T G * A C G C

    and 4 moves would be required (3 changes and 1 deletion).

    In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is n where nm.

    Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.

    Write a program that would minimize the number of possible operations to transform any string x into a string y.

    Input

    The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.

    Output

    An integer representing the minimum number of possible operations to transform any string x into a string y.

    Sample Input

    10 AGTCTGACGC
    11 AGTAAGTAGGC

    Sample Output

    4

    Source

     
    题意:
    由字符串 s1 通过下列三种操作
     1、插入一个字符;
       2、删除一个字符;
     3、改变一个字符
    变换到字符串 s2 所需要的最少操作次数(亦即最短编辑距离问题)

    解析:

    第三届软件大赛决赛中关于核苷酸 变换的问题解析http://blog.csdn.net/kuaisuzhuceh/article/details/8680799如下(同样也适用于该题);
    状态转移方程:
    有三种情况可以导致我们上面设计的状态会发生转移。我们现在来看A[i] 和 B[j] ,
    ①、我们可以在 B[j]后面插入一个核苷酸(即一个字符)ch,ch==A[i],这样做的话,
    至少需要 dp[i - 1][j] + 1步操作,即 dp[i][j] = dp[i - 1][j] + 1。
    ②、我们可以删除 B[j],这样的话,B[1...j] 变为A[1...i] 需要 dp[i][j - 1]步,
    即 dp[i][j] = dp[i][j - 1] + 1。
    ③、我们也可以考虑修改 B[j],使它变为A[j],但是如果 B[j]本来就等于 A[i]的话,
    那修改其实相当于用了 0步,如果 B[j] != A[i] 的话,那修改相当于用了 1步。
    所以 dp[i][j] = dp[i - 1][j - 1] + (A[i] == B[j] ? 0, 1)。

    决策:
    决策就很简单了,从上面三种状态转移中选择一个最小值就可以了。

    处理边界:
    处理好边界非常重要,这里需要注意的是对dp[0][0....m],dp[0.....n][0]的初始化,
    可以这样看,dp[0][i],就是说A[1...n]是一个空串,而B[1...m]十个长度为i的串,
    很显然B串变为A串就是删除i个核苷酸。

     1 #include <cstdio>
     2 #include <iostream>
     3 #include <cstring>
     4 
     5 using namespace std;
     6 
     7 int len1, len2;
     8 int dp[1005][1005];//  dp[i][j] 表示 s1[0...i-1]变换到  s2[0...j-1] 的最短编辑距离 
     9 char s1[1005], s2[1005];
    10 
    11 inline int min(int a, int b)
    12 {
    13     return a < b ? a : b;
    14 }
    15 
    16 inline int max(int a, int b)
    17 {
    18     return a > b ? a : b;
    19 }
    20 
    21 void init()
    22 {
    23     memset(dp, 0, sizeof(dp));
    24     int tmp = max(len1, len2);
    25     for(int i = 1; i <= tmp; ++i)  // 注意初始化 
    26     {
    27         dp[i][0] = dp[0][i] = i;
    28     }
    29 }
    30 
    31 int DP()
    32 {
    33     for(int i = 0; i < len1; ++i)
    34         for(int j = 0; j < len2; ++j)
    35         {
    36             if(s1[i] == s2[j])
    37                 dp[i+1][j+1] = min(min(dp[i+1][j]+1, dp[i][j+1]+1), dp[i][j]);
    38             else 
    39                 dp[i+1][j+1] = min(min(dp[i+1][j]+1, dp[i][j+1]+1), dp[i][j]+1); 
    40         }
    41     return dp[len1][len2];
    42 }
    43 
    44 int main()
    45 {
    46     while(cin >> len1 >> s1)
    47     {
    48         cin >> len2 >> s2;
    49         init();
    50         cout << DP() << endl;
    51     }
    52     return 0;
    53 }
  • 相关阅读:
    web页面常用方法及INI文件的读取方法
    winform 三个Panel左右切换(panel里面填充图片)
    图片渐出轮播的效果
    Winform跑马灯——Graphics运用
    .net 3.5 新功能重写ToInt()方法
    style.display
    SQL: 分页SQL SQL2005函数分页!
    JS: 验证输入必须为数字
    Table 里面点标题会进行排序
    在Div中绑定数据
  • 原文地址:https://www.cnblogs.com/dongsheng/p/3102498.html
Copyright © 2011-2022 走看看