zoukankan      html  css  js  c++  java
  • 粒子群基本算法

    #include <iostream>
    #include <math.h>
    #include <time.h>
    using namespace std;
    
    #define M 50  //群体数目50
    #define N 4   //每个粒子的维数4
    #define NN 100 //迭代次数
    //测试类
    class TestFunction
    {
        public:
            double resen(double x1,double x2,double x3,double x4)
            {
                double s=0;
                s=100*(x2-x1*x1)*(x2-x1*x1)+(1-x1)*(1-x1)+s;
                s=100*(x3-x2*x2)*(x3-x2*x2)+(1-x2)*(1-x2)+s;
                s=100*(x4-x3*x3)*(x4-x3*x3)+(1-x3)*(1-x3)+s;
                return s;
            }
    };
    
    class CQPSO
    {
        private:
            double (*w)[N];// = new double[50][4]; //总体粒子
            double *f;//=new double[M];//适应度值
            double *ff;//=new double[M];//相对f的比较值
            double (*p)[N];//=new double[M][N];
            double (*v)[N];//粒子更新速度
            double *g;//=new double[N];
            double c1;
            double c2;
            TestFunction *tf;// = new TestFunction;
            double random()
            {
                double s;
                s=(abs(rand())%10000+10000)/10000.0-1.0;    
                return s;
            }
        public:
            CQPSO( )
            {
                int i,j;
                w=new double[M][N];
                v=new double[M][N];
                f=new double[M];
                ff=new double[M];
                p=new double[M][N];
                g=new double[N];
                tf=new TestFunction;
                for(i=0;i<M;i++)
                {
                    for(j=0;j<N;j++)
                    {
                        w[i][j]=random();
                        v[i][j]=random();
                    }
                }
                c1=2;
                c2=2;
            }
    
            void CQPSOmethod(int count)
            {
                int i,j;
                if(count==1)
                {
                    for(i=0;i<M;i++)
                    {
                        for(j=0;j<N;j++)
                        {
                            p[i][j]=w[i][j];
                        }
                        f[i]=tf->resen(w[i][0],w[i][1],w[i][2],w[i][3]);
                    }
                    cqpso_p();//得出全局最优
                }
    
                if(count>1)
                {
                    cqpso_update(count);
                    for(i=0;i<M;i++)
                    {
                        ff[i]=tf->resen(w[i][0],w[i][1],w[i][2],w[i][3]);
                        if(ff[i]<f[i])
                        {    
                            f[i]=ff[i];
                            for(j=0;j<N;j++) p[i][j]=w[i][j];
                        }
                    }
                    cqpso_p();
                }
                cout<<(tf->resen(g[0],g[1],g[2],g[3]))<<endl;
            }
    
            double ww(int count)
            {
                double wmax=0.9;
                double wmin=0.1;
                double wx=0.9-count*(0.8/NN);
                return wx;
            }
    
            void cqpso_p()//得到个体最优中最小值——全局最优
            {
                double temp=f[0];
                int i,j;
                for(i=1;i<M;i++)
                {
                    if(f[i]<temp)
                    {
                        temp=f[i];
                    }
                }
                for(i=0;i<M;i++)
                {
                    if(temp==f[i])
                    {
                        for(j=0;j<N;j++)
                        {
                            g[j]=p[i][j];
                        }
                        break;
                    }
                }
            }    
            void cqpso_update(int count )
            {
                int i,j;
                for(i=0;i<M;i++)
                {
                    for(j=0;j<N;j++)
                        v[i][j]=ww(count)*v[i][j]+c1*random()*(p[i][j]-w[i][j])+c2*random()*(g[j]-w[i][j]);
                }
                for(i=0;i<M;i++)
                {
                    for(j=0;j<N;j++)
                        w[i][j]=w[i][j]+v[i][j];
                }
            }
        
    };
    
    int main()
    {
        int i;
        srand((unsigned)time(0)); 
        CQPSO *qo = new CQPSO();
        for(i=1;i<NN;i++)
        qo->CQPSOmethod(i);
    }
  • 相关阅读:
    poj_2352树状数组
    poj_2187凸包,暴力解法
    zoj_3735,dp,长沙站j题
    hdu_1698线段树成段更新
    poj_2828线段树,逆序插入
    poj_3371
    poj_3071概率dp
    hdu_2191多重背包
    poj_1185状压dp
    css-margin
  • 原文地址:https://www.cnblogs.com/dongzhuangdian/p/5149436.html
Copyright © 2011-2022 走看看