zoukankan      html  css  js  c++  java
  • LeetCode | Reverse Integer

    Reverse digits of an integer.

    Example1: x = 123, return 321
    Example2: x = -123, return -321

    Have you thought about this?

    Here are some good questions to ask before coding. Bonus points for you if you have already thought through this!

    If the integer's last digit is 0, what should the output be? ie, cases such as 10, 100.

    Did you notice that the reversed integer might overflow? Assume the input is a 32-bit integer, then the reverse of 1000000003 overflows. How should you handle such cases?

    For the purpose of this problem, assume that your function returns 0 when the reversed integer overflows.

    若果不考虑边界溢出的话,只是简单的实现reverse功能:

     

    public class Solution {
    	public static int reverse(int x) {
    		int num = Math.abs(x);
    		int res = 0;
    		
    		while(num != 0){
    			res = res*10 + num%10;
    			num = num/10;
    		}
    		
    		return x>0?res:-res;
    	}
    }


    而实际要考虑Java中int的取值范围,加上边界溢出检测条件,提示当大于等于溢出边界时输出 0 

     

    public class Solution {
        public int reverse(int x) {
            if(x == Integer.MIN_VALUE) return 0;  //在Java的int范围:[-2147483648, 2147483647]
                                                  //即 abs(MIN_VALUE) = abs(MAX_VALUE) + 1
            int num = Math.abs(x);
            int res = 0;
            while(num!=0)
            {
                if(res>(Integer.MAX_VALUE-num%10)/10)    //边界溢出检查:若if条件满足,继续向下执行res = res*10+num%10
                rerun 0;                                //就会得到res >= MAX_VALUE,即发生了溢出
                
                res = res*10+num%10;
                num /= 10;                               //此处注意:Java对 / 运算也是截尾的,123/10 = 129/10 =12
            }
            return x>0?res:-res;
        }
    }


  • 相关阅读:
    bzoj 1098 [POI2007] 办公楼 biu
    「 Luogu P2574 」 XOR的艺术——线段树
    「 Luogu P2801 」 教主的魔法——分块
    Luogu P1438 无聊的数列
    「 Luogu P2420 」 让我们异或吧
    「 SPOJ GSS3 」 Can you answer these queries III
    「 HDOJ P2227 」 Find the nondecreasing subsequences
    「 HDOJ P3887 」 Counting Offspring
    一些性质及公式
    OI杂记
  • 原文地址:https://www.cnblogs.com/dosmile/p/6444455.html
Copyright © 2011-2022 走看看