zoukankan      html  css  js  c++  java
  • LeetCode | Best Time to Buy and Sell Stock III

    Say you have an array for which the ith element is the price of a given stock on day i.Design an algorithm to find the maximum profit. You may complete at most two transactions.

    Note: You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

    要求:最多进行两次transaction,且同时只能持有一只股票。 tags:dynamic programming

    解法一:

    基本的想法:将数组分为前、后两个部分,分别用Best Time to Buy and Sell Stock I的方法来求解两个部分的最大收益,再求和。
    通过N次数组划分之后,选出最大的总利润(提示超时。。。。。)

    public class Solution {
        public int profit(int[] prices, int start, int end){  //Best Time to Buy and Sell Stock I 的解法
            if(end <= start) return 0;  
            int maxProfit = 0;  
            int min_price = prices[start];  
            for(int i=start; i<=end; i++){  
                if(prices[i]<min_price) min_price=prices[i];      
                if(prices[i]-min_price > maxProfit) maxProfit=prices[i]-min_price;  
            }  
            return maxProfit;  
        }
        
        public int maxProfit(int[] prices) {       //leetcode函数,实现对数组的N次划分
            if(prices.length <= 1) return 0;
            
            int maxProfit = 0;
            for(int i=0; i<prices.length; i++){
                int sum_profit = profit(prices, 0, i) + profit(prices, i+1, prices.length-1);
                if(maxProfit < sum_profit) maxProfit = sum_profit;
            }
            return maxProfit;
        }
    }
    

    解法二:

    profit_0_i表示从0至i天所能获得的最大利润
    profit_i_n表示从i至n天所能获得的最大利润
    举例:prices = {2 1 8 3 5 9},则:
      profit_0_i = {0 0 7 7 7 8},填充时从左向右遍历,总是取已知最低价格min_price,然后用prices[i]-min_price来判断[0-i]区间能获得的最大收益
      profit_i_n = {8 8 6 6 4 0},填充时从右向左遍历,总是取已知最高价格max_price,然后用max_price-prices[i]来判断[i-n]区间能获得的最大收益
     则 max{ profit_0_i[i] + profit_i_n[i] } = 7 + 6 = 13 即为最大收益

    public class Solution {
        public int maxProfit(int[] prices) {       
            if(prices.length <= 1) return 0;
            
            int[] profit_0_i = new int[prices.length];     //记录从0至i能获得的最大收益
            int[] profit_i_n = new int[prices.length];     //记录从i至n能获得的最大收益
            
            //求解填充数组profit_0_i
            int temp_1 = 0;
            int min_price = prices[0];
            for(int i=0; i<prices.length; i++){       //同Best Time to Buy and Sell Stock I 中的方法
                if(prices[i] < min_price) min_price = prices[i];
                if(prices[i]-min_price > temp_1) temp_1 = prices[i] - min_price;
                profit_0_i[i] = temp_1;
            }
            
            //求解填充数组profit_i_n
            int temp_2 = 0;
            int max_price = prices[prices.length-1];
            for(int j=prices.length-1; j>=0; j--){   //同Best Time to Buy and Sell Stock I 中的方法
                if(prices[j] > max_price) max_price = prices[j];
                if(max_price-prices[j] > temp_2) temp_2 = max_price - prices[j];
                profit_i_n[j] = temp_2;
            }
             
            //找最大的收益和
            int maxProfit = 0;
            for(int k=0; k<prices.length; k++){       //找最大的对应项之和
                int temp = profit_0_i[k] + profit_i_n[k];
                if(temp > maxProfit) maxProfit = temp;
            }
            return maxProfit;
        }
    }



  • 相关阅读:
    我的友情链接
    我的友情链接
    我的友情链接
    我的友情链接
    我的友情链接
    我的友情链接
    我的友情链接
    以太坊设计与实现:数据结构与对象-账户
    以太坊设计与实现:数据结构与对象-创世区块与配置分析
    以太坊设计与实现:数据结构与对象-链配置
  • 原文地址:https://www.cnblogs.com/dosmile/p/6444459.html
Copyright © 2011-2022 走看看