zoukankan      html  css  js  c++  java
  • uva 10004

    题目: 相邻两个点不能相同颜色

    坑爹。。今天用BFS写怎么写怎么错

    题目:

      Bicoloring 

    In 1976 the ``Four Color Map Theorem" was proven with the assistance of a computer. This theorem states that every map can be colored using only four colors, in such a way that no region is colored using the same color as a neighbor region.

    Here you are asked to solve a simpler similar problem. You have to decide whether a given arbitrary connected graph can be bicolored. That is, if one can assign colors (from a palette of two) to the nodes in such a way that no two adjacent nodes have the same color. To simplify the problem you can assume:

    • no node will have an edge to itself.
    • the graph is nondirected. That is, if a node a is said to be connected to a node b, then you must assume that b is connected to a.
    • the graph will be strongly connected. That is, there will be at least one path from any node to any other node.

    Input 

    The input consists of several test cases. Each test case starts with a line containing the number n ( 1 < n < 200) of different nodes. The second line contains the number of edges l. After this, l lines will follow, each containing two numbers that specify an edge between the two nodes that they represent. A node in the graph will be labeled using a number a ( $0 le a < n$).

    An input with n = 0 will mark the end of the input and is not to be processed.

    Output 

    You have to decide whether the input graph can be bicolored or not, and print it as shown below.

    Sample Input 

    3
    3
    0 1
    1 2
    2 0
    9
    8
    0 1
    0 2
    0 3
    0 4
    0 5
    0 6
    0 7
    0 8
    0
    

    Sample Output 

    NOT BICOLORABLE.
    BICOLORABLE.
    
     1     #include <iostream>
     2     #include <memory.h>
     3     #include <cstdio>
     4     #include <queue>
     5     using namespace std;
     6 
     7     const int maxn = 300;
     8     int G[maxn][maxn];
     9     int vis[maxn];
    10     int node,edge;
    11     bool flag=true;
    12 
    13     bool dfs(int u)
    14     {
    15         for(int i=0;i<node;i++)
    16         {
    17             if(G[u][i]==1 && vis[i]!=0)
    18             {
    19                 if(vis[i]==vis[u])
    20                  {
    21                      flag = false;
    22                      return false;
    23                  }
    24             }
    25         }
    26 
    27         for(int i=0;i<node;i++)
    28         {
    29             if(G[u][i]&& !vis[i])
    30             {
    31                 if(vis[u]==1)vis[i]=2;
    32                 if(vis[u]==2)vis[i]=1;
    33 
    34                 dfs(i);
    35             }
    36         }
    37 
    38     }
    39 
    40     int main()
    41     {
    42        // freopen("in","r",stdin);
    43         while(cin>>node)
    44         {
    45             if(node==0)break;
    46 
    47             cin>>edge;
    48             for(int i=0;i<edge;i++)
    49             {
    50                 int tx,ty;
    51                 cin>>tx>>ty;
    52                 G[tx][ty]=G[ty][tx]=1;
    53 
    54             }
    55             vis[0]=1;
    56 
    57             dfs(0);
    58             if(!flag)
    59             {
    60                 cout<<"NOT BICOLORABLE."<<endl;
    61             }
    62             if(flag)cout<<"BICOLORABLE."<<endl;
    63             flag=true;
    64             memset(G,0,sizeof(G));
    65             memset(vis,0,sizeof(vis));
    66         }
    67 
    68         return 0;
    69     }
  • 相关阅读:
    加沙地带
    特拉维夫以色列第二大城市,滨临东地中海,以色列最为国际化的经济中心
    1980年,以色列国会立法确定耶路撒冷是该国“永远的与不可分割的首都”。而巴勒斯坦自治政府也宣布耶路撒冷将是未来巴勒斯坦国的首都。在21世纪,耶路撒冷仍然是巴以冲突的中心。
    delete
    NUnit -- Test discovery or execution might not work for this project
    HearthBuddy中_settings.txt的更详细参数解释
    WPF global exception handler
    sftp winscp
    cdn and fallback
    What happens in an async method
  • 原文地址:https://www.cnblogs.com/doubleshik/p/3440565.html
Copyright © 2011-2022 走看看