zoukankan      html  css  js  c++  java
  • uva 10004

    题目: 相邻两个点不能相同颜色

    坑爹。。今天用BFS写怎么写怎么错

    题目:

      Bicoloring 

    In 1976 the ``Four Color Map Theorem" was proven with the assistance of a computer. This theorem states that every map can be colored using only four colors, in such a way that no region is colored using the same color as a neighbor region.

    Here you are asked to solve a simpler similar problem. You have to decide whether a given arbitrary connected graph can be bicolored. That is, if one can assign colors (from a palette of two) to the nodes in such a way that no two adjacent nodes have the same color. To simplify the problem you can assume:

    • no node will have an edge to itself.
    • the graph is nondirected. That is, if a node a is said to be connected to a node b, then you must assume that b is connected to a.
    • the graph will be strongly connected. That is, there will be at least one path from any node to any other node.

    Input 

    The input consists of several test cases. Each test case starts with a line containing the number n ( 1 < n < 200) of different nodes. The second line contains the number of edges l. After this, l lines will follow, each containing two numbers that specify an edge between the two nodes that they represent. A node in the graph will be labeled using a number a ( $0 le a < n$).

    An input with n = 0 will mark the end of the input and is not to be processed.

    Output 

    You have to decide whether the input graph can be bicolored or not, and print it as shown below.

    Sample Input 

    3
    3
    0 1
    1 2
    2 0
    9
    8
    0 1
    0 2
    0 3
    0 4
    0 5
    0 6
    0 7
    0 8
    0
    

    Sample Output 

    NOT BICOLORABLE.
    BICOLORABLE.
    
     1     #include <iostream>
     2     #include <memory.h>
     3     #include <cstdio>
     4     #include <queue>
     5     using namespace std;
     6 
     7     const int maxn = 300;
     8     int G[maxn][maxn];
     9     int vis[maxn];
    10     int node,edge;
    11     bool flag=true;
    12 
    13     bool dfs(int u)
    14     {
    15         for(int i=0;i<node;i++)
    16         {
    17             if(G[u][i]==1 && vis[i]!=0)
    18             {
    19                 if(vis[i]==vis[u])
    20                  {
    21                      flag = false;
    22                      return false;
    23                  }
    24             }
    25         }
    26 
    27         for(int i=0;i<node;i++)
    28         {
    29             if(G[u][i]&& !vis[i])
    30             {
    31                 if(vis[u]==1)vis[i]=2;
    32                 if(vis[u]==2)vis[i]=1;
    33 
    34                 dfs(i);
    35             }
    36         }
    37 
    38     }
    39 
    40     int main()
    41     {
    42        // freopen("in","r",stdin);
    43         while(cin>>node)
    44         {
    45             if(node==0)break;
    46 
    47             cin>>edge;
    48             for(int i=0;i<edge;i++)
    49             {
    50                 int tx,ty;
    51                 cin>>tx>>ty;
    52                 G[tx][ty]=G[ty][tx]=1;
    53 
    54             }
    55             vis[0]=1;
    56 
    57             dfs(0);
    58             if(!flag)
    59             {
    60                 cout<<"NOT BICOLORABLE."<<endl;
    61             }
    62             if(flag)cout<<"BICOLORABLE."<<endl;
    63             flag=true;
    64             memset(G,0,sizeof(G));
    65             memset(vis,0,sizeof(vis));
    66         }
    67 
    68         return 0;
    69     }
  • 相关阅读:
    LeetCode 224. 基本计算器 栈 双指针
    LeetCode 150. 逆波兰表达式求值 栈
    LeetCode 387. 字符串中的第一个唯一字符 哈希
    LeetCode 316. 去除重复字母 栈 哈希
    LeetCode 44. 通配符匹配 dp
    禁止屏幕旋转并同时解决以至于导致Activity重启的方法
    让振动器振动起来——Vibrator的使用
    简单的JDBC封装
    js jquery ajax 清除ie下的缓存问题
    angular.js 下拉框选中 根据后台返回值
  • 原文地址:https://www.cnblogs.com/doubleshik/p/3440565.html
Copyright © 2011-2022 走看看