zoukankan      html  css  js  c++  java
  • uva 10004

    题目: 相邻两个点不能相同颜色

    坑爹。。今天用BFS写怎么写怎么错

    题目:

      Bicoloring 

    In 1976 the ``Four Color Map Theorem" was proven with the assistance of a computer. This theorem states that every map can be colored using only four colors, in such a way that no region is colored using the same color as a neighbor region.

    Here you are asked to solve a simpler similar problem. You have to decide whether a given arbitrary connected graph can be bicolored. That is, if one can assign colors (from a palette of two) to the nodes in such a way that no two adjacent nodes have the same color. To simplify the problem you can assume:

    • no node will have an edge to itself.
    • the graph is nondirected. That is, if a node a is said to be connected to a node b, then you must assume that b is connected to a.
    • the graph will be strongly connected. That is, there will be at least one path from any node to any other node.

    Input 

    The input consists of several test cases. Each test case starts with a line containing the number n ( 1 < n < 200) of different nodes. The second line contains the number of edges l. After this, l lines will follow, each containing two numbers that specify an edge between the two nodes that they represent. A node in the graph will be labeled using a number a ( $0 le a < n$).

    An input with n = 0 will mark the end of the input and is not to be processed.

    Output 

    You have to decide whether the input graph can be bicolored or not, and print it as shown below.

    Sample Input 

    3
    3
    0 1
    1 2
    2 0
    9
    8
    0 1
    0 2
    0 3
    0 4
    0 5
    0 6
    0 7
    0 8
    0
    

    Sample Output 

    NOT BICOLORABLE.
    BICOLORABLE.
    
     1     #include <iostream>
     2     #include <memory.h>
     3     #include <cstdio>
     4     #include <queue>
     5     using namespace std;
     6 
     7     const int maxn = 300;
     8     int G[maxn][maxn];
     9     int vis[maxn];
    10     int node,edge;
    11     bool flag=true;
    12 
    13     bool dfs(int u)
    14     {
    15         for(int i=0;i<node;i++)
    16         {
    17             if(G[u][i]==1 && vis[i]!=0)
    18             {
    19                 if(vis[i]==vis[u])
    20                  {
    21                      flag = false;
    22                      return false;
    23                  }
    24             }
    25         }
    26 
    27         for(int i=0;i<node;i++)
    28         {
    29             if(G[u][i]&& !vis[i])
    30             {
    31                 if(vis[u]==1)vis[i]=2;
    32                 if(vis[u]==2)vis[i]=1;
    33 
    34                 dfs(i);
    35             }
    36         }
    37 
    38     }
    39 
    40     int main()
    41     {
    42        // freopen("in","r",stdin);
    43         while(cin>>node)
    44         {
    45             if(node==0)break;
    46 
    47             cin>>edge;
    48             for(int i=0;i<edge;i++)
    49             {
    50                 int tx,ty;
    51                 cin>>tx>>ty;
    52                 G[tx][ty]=G[ty][tx]=1;
    53 
    54             }
    55             vis[0]=1;
    56 
    57             dfs(0);
    58             if(!flag)
    59             {
    60                 cout<<"NOT BICOLORABLE."<<endl;
    61             }
    62             if(flag)cout<<"BICOLORABLE."<<endl;
    63             flag=true;
    64             memset(G,0,sizeof(G));
    65             memset(vis,0,sizeof(vis));
    66         }
    67 
    68         return 0;
    69     }
  • 相关阅读:
    叶落归根(hometown)
    设置(settings)
    文明距离(civil)
    计算机基础知识
    gojs插件使用教程
    编程语言分类
    dp优化简单总结
    Splay入门题目 [HNOI2002]营业额统计
    hdu3415:最大k子段和,单调队列
    hdu5072(鞍山regional problem C):容斥,同色三角形模型
  • 原文地址:https://www.cnblogs.com/doubleshik/p/3440565.html
Copyright © 2011-2022 走看看