https://blog.csdn.net/u012328159/article/details/80081962
公式细节推导
Ag课程的总结(单层神经网络)
Ag课程的总结(深层神经网络)
已知 (AL) 和 (J),先求出 (dAL):
(dAL = -(np.divide(Y, AL) - np.divide(1-Y, 1-AL)) )
---> (dZL = dAL * sigmod'(Z^{[L]}) = dAL*s*(1-s) )
---> (dWL=frac{1}{m}dZL·A^{[L-1]T})
---> (dbL=frac{1}{m}np.sum(dZL, axis=1, keepdims=True) )
---> (dA^{[L-1]} = W^{[L]T}·dZ^{[L]})
===>
(dZ^{[l]} = dA^{[l]} * g'(Z^{[l]})) ((l in [L-1 , 1]) ,(relu'(Z^{[l]}) = np.int64(A^{[l]} > 0)) )
---> (dW^{[l]} = frac{1}{m}dZ^{[l]}·A^{[l-1]T})
---> (db^{[l]}=frac{1}{m}np.sum(dZ^{[l]}, axis=1, keepdims=True) )
---> (dA^{[l-1]} = dZ^{[l]}·W^{[l]} = W^{[l]T}·dZ^{[l]})
……
……