zoukankan      html  css  js  c++  java
  • 改善深层神经网络-week1编程题(GradientChecking)

    1. Gradient Checking

    你被要求搭建一个Deep Learning model来检测欺诈,每当有人付款,你想知道是否该支付可能是欺诈,例如该用户的账户可能已经被黑客掉。

    但是,反向传播实现起来非常有挑战,并且有时有一些bug,因为这是一个mission-critical应用,你公司老板想让十分确定,你实现的反向传播是正确的。你需要用“gradient checking”来证明你的反向传播是正确的。

    # Packages
    import numpy as np
    from testCases import *
    from gc_utils import sigmoid, relu, dictionary_to_vector, vector_to_dictionary, gradients_to_vector
    

    1.1 gradient checking 如何工作?

    Backpropagation 计算梯度(the gradients) (frac{partial J}{partial heta})( heta)代表着模型的参数,(J) 是使用前向传播和你的loss function来计算的。
    前向传播十分容易,因此你使用计算 (J) 的代码 来确认计算 (frac{partial J}{partial heta}) 的代码

    我们来看一下derivative (or gradient)的定义:

    [frac{partial J}{partial heta} = lim_{varepsilon o 0} frac{J( heta + varepsilon) - J( heta - varepsilon)}{2 varepsilon} ag{1} ]

    接下来:

    • (frac{partial J}{partial heta}) 是你想要确保计算正确的
    • 你可以计算(J( heta + varepsilon)) and (J( heta - varepsilon))(这个例子中( heta)是一个实数)。(已知J是正确的)

    我们要使用公式(1) 和一个很小的数 (varepsilon) 来保证你计算 (frac{partial J}{partial heta}) 的代码是正确的。

    2. 1-dimensional gradient checking

    只考虑一元线性函数 (J( heta) = heta x). The model contains only a single real-valued parameter ( heta), and takes (x) as input.

    You will implement code to compute (J(.)) and its derivative (frac{partial J}{partial heta}). You will then use gradient checking to make sure your derivative computation for (J) is correct.

    **Figure 1** : **1D linear model**

    上图展示了关键的计算步骤: 首先开始于 (x), 随后评估 (J(x)) ("forward propagation"). 然后计算 the derivative (frac{partial J}{partial heta}) ("backward propagation").

    Exercise: 实现这个简单函数的 "forward propagation" and "backward propagation" . I.e., 计算 (J(.)) ("forward propagation") 和 它关于 ( heta) 的导数("backward propagation"), 在两个函数里。

    # GRADED FUNCTION: forward_propagation
    
    def forward_propagation(x, theta):
        """
        Implement the linear forward propagation (compute J) presented in Figure 1 (J(theta) = theta * x)
        
        Arguments:
        x -- a real-valued input
        theta -- our parameter, a real number as well
        
        Returns:
        J -- the value of function J, computed using the formula J(theta) = theta * x
        """
        
        ### START CODE HERE ### (approx. 1 line)
        J = theta * x
        ### END CODE HERE ###
        
        return J
    

    测试:

    x, theta = 2, 4
    J = forward_propagation(x, theta)
    print ("J = " + str(J))
    

    J = 8

    Exercise: 现在,实现图1中反向传播(导数计算)步骤:计算 (J( heta) = heta x) 关于 ( heta) 的导数. 用 (dtheta = frac { partial J }{ partial heta} = x) 来保存你做的计算。

    # GRADED FUNCTION: backward_propagation
    
    def backward_propagation(x, theta):
        """
        Computes the derivative of J with respect to theta (see Figure 1).
        
        Arguments:
        x -- a real-valued input
        theta -- our parameter, a real number as well
        
        Returns:
        dtheta -- the gradient of the cost with respect to theta
        """
        
        ### START CODE HERE ### (approx. 1 line)
        dtheta = x
        ### END CODE HERE ###
        
        return dtheta
    

    测试

    x, theta = 2, 4
    dtheta = backward_propagation(x, theta)
    print ("dtheta = " + str(dtheta))
    

    dtheta = 2

    Exercise: 为了显示 backward_propagation() 函数是正确计算 the gradient (frac{partial J}{partial heta}), 让我们实现 gradient checking.

    Instructions:

    • 首先,计算 "gradapprox" 使用公式(1)和 一个很小的值 (varepsilon).遵循以下步骤:
      1. ( heta^{+} = heta + varepsilon)
      2. ( heta^{-} = heta - varepsilon)
      3. (J^{+} = J( heta^{+}))
      4. (J^{-} = J( heta^{-}))
      5. (gradapprox = frac{J^{+} - J^{-}}{2 varepsilon})
    • 然后,使用backward propagation计算gradient , 并存储结果到变量 "grad"
    • 最后, 计算 "gradapprox" 和 the "grad" 的相对偏差,使用下列公式:

    [difference = frac {midmid grad - gradapprox midmid_2}{midmid grad midmid_2 + midmid gradapprox midmid_2} ag{2} ]

    你需要三个步骤来计算这个公式:

    • 1'. compute the numerator(分子) using np.linalg.norm(...)
    • 2'. compute the denominator(分母). You will need to call np.linalg.norm(...) twice.
    • 3'. divide them.
    • 如果这个 difference 非常小 (小于 (10^{-7})), gradient计算正确. 否则,错误.
    # GRADED FUNCTION: gradient_check
    
    def gradient_check(x, theta, epsilon = 1e-7):
        """
        Implement the backward propagation presented in Figure 1.
        
        Arguments:
        x -- a real-valued input
        theta -- our parameter, a real number as well
        epsilon -- tiny shift to the input to compute approximated gradient with formula(1)
        
        Returns:
        difference -- difference (2) between the approximated gradient and the backward propagation gradient
        """
        
        # Compute gradapprox using left side of formula (1). epsilon is small enough, you don't need to worry about the limit.
        ### START CODE HERE ### (approx. 5 lines)
        thetaplus = theta + epsilon
        thetaminus = theta - epsilon
        J_plus = forward_propagation(x, thetaplus)
        J_minus = forward_propagation(x, thetaminus)
        gradapprox = (J_plus - J_minus) / (2. * epsilon)
        ### END CODE HERE ###
        
        # Check if gradapprox is close enough to the output of backward_propagation()
        ### START CODE HERE ### (approx. 1 line)
        grad = backward_propagation(x, theta)
        ### END CODE HERE ###
            
        ### START CODE HERE ### (approx. 1 line)
        numerator = np.linalg.norm(grad - gradapprox)
        denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox)
        difference = numerator / denominator
        ### END CODE HERE ###
        
        if difference < 1e-7:
            print ("The gradient is correct!")
        else:
            print ("The gradient is wrong!")
        
        return difference
    
    x, theta = 2, 4
    difference = gradient_check(x, theta)
    print("difference = " + str(difference))
    

    The gradient is correct!
    difference = 2.919335883291695e-10

    上述计算检验正确。即,可以正确的计算反向传播。

    现在,你的 cost function (J) has more than a single 1D input。当你训练一个神经网络,( heta) 事实上由multiple matrices (W^{[l]}) and biases (b^{[l]})组成,知道如何 梯度检验 高维度输入 非常重要。

    3. N-dimensional gradient checking

    下图描述了你的欺诈检测的前向和反向传播的模型:

    **Figure 2** : **deep neural network**
    *LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID*

    下面实现forward propagation and backward propagation.

    def forward_propagation_n(X, Y, parameters):
        """
        Implements the forward propagation (and computes the cost) presented in Figure 3.
        
        Arguments:
        X -- training set for m examples
        Y -- labels for m examples 
        parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
                        W1 -- weight matrix of shape (5, 4)
                        b1 -- bias vector of shape (5, 1)
                        W2 -- weight matrix of shape (3, 5)
                        b2 -- bias vector of shape (3, 1)
                        W3 -- weight matrix of shape (1, 3)
                        b3 -- bias vector of shape (1, 1)
        
        Returns:
        cost -- the cost function (logistic cost for one example)
        """
        
        # retrieve parameters
        m = X.shape[1]
        W1 = parameters["W1"]
        b1 = parameters["b1"]
        W2 = parameters["W2"]
        b2 = parameters["b2"]
        W3 = parameters["W3"]
        b3 = parameters["b3"]
    
        # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
        Z1 = np.dot(W1, X) + b1
        A1 = relu(Z1)
        Z2 = np.dot(W2, A1) + b2
        A2 = relu(Z2)
        Z3 = np.dot(W3, A2) + b3
        A3 = sigmoid(Z3)
    
        # Cost
        logprobs = np.multiply(-np.log(A3),Y) + np.multiply(-np.log(1 - A3), 1 - Y)
        cost = 1./m * np.sum(logprobs)
        
        cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)
        
        return cost, cache
    

    Now, run backward propagation.

    def backward_propagation_n(X, Y, cache):
        """
        Implement the backward propagation presented in figure 2.
        
        Arguments:
        X -- input datapoint, of shape (input size, 1)
        Y -- true "label"
        cache -- cache output from forward_propagation_n()
        
        Returns:
        gradients -- A dictionary with the gradients of the cost with respect to each parameter, activation and pre-activation variables.
        """
        
        m = X.shape[1]
        (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache
        
        dZ3 = A3 - Y
        dW3 = 1./m * np.dot(dZ3, A2.T)
        db3 = 1./m * np.sum(dZ3, axis=1, keepdims=True)
        
    
        dA2 = np.dot(W3.T, dZ3)
        dZ2 = np.multiply(dA2, np.int64(A2 > 0))
        dW2 = 1./m * np.dot(dZ2, A1.T) * 2                  # 这里故意写错
        db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)
        
        dA1 = np.dot(W2.T, dZ2)
        dZ1 = np.multiply(dA1, np.int64(A1 > 0))
        dW1 = 1./m * np.dot(dZ1, X.T)
        db1 = 4./m * np.sum(dZ1, axis=1, keepdims = True)   # 这里故意写错
        
        gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,
                     "dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2,
                     "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1}
        
        return gradients
    

    下面进行梯度检验来确保你的梯度是正确的.

    gradient checking 如何工作?.

    As in 1) and 2), you want to compare "gradapprox" to the gradient computed by backpropagation. The formula is still:

    [frac{partial J}{partial heta} = lim_{varepsilon o 0} frac{J( heta + varepsilon) - J( heta - varepsilon)}{2 varepsilon} ag{1} ]

    但是, ( heta) 不再是标量. 而是一个叫 "parameters"的字典. 下面实现一个 "dictionary_to_vector()"(字典转向量). 它将"parameters" dictionary 转换成名为"values"的vector, 通过 reshaping all parameters (W1, b1, W2, b2, W3, b3) into vectors and concatenating(连接) them 获得.

    The inverse function is "vector_to_dictionary"(向量转字典) which outputs back the "parameters" dictionary.

    **Figure 2** : **dictionary_to_vector() and vector_to_dictionary()**
    You will need these functions in gradient_check_n()

    We have also converted the "gradients" dictionary into a vector "grad" using gradients_to_vector(). You don't need to worry about that.

    Exercise: Implement gradient_check_n().

    Instructions: 这里的伪代码(pseudo-code)将帮助你实现梯度检测(the gradient check).

    For each i in num_parameters:

    • To compute J_plus[i]:
      1. Set ( heta^{+}) to np.copy(parameters_values) (深拷贝)
      2. Set ( heta^{+}_i) to ( heta^{+}_i + varepsilon)
      3. Calculate (J^{+}_i) using to forward_propagation_n(x, y, vector_to_dictionary(( heta^{+}) )).
    • To compute J_minus[i]: do the same thing with ( heta^{-})
    • Compute (gradapprox[i] = frac{J^{+}_i - J^{-}_i}{2 varepsilon})

    Thus, you get a vector gradapprox, where gradapprox[i] is an approximation of the gradient with respect to parameter_values[i]. You can now compare this gradapprox vector to the gradients vector from backpropagation. Just like for the 1D case (Steps 1', 2', 3'), compute:

    [difference = frac {| grad - gradapprox |_2}{| grad |_2 + | gradapprox |_2 } ag{3} ]

    # GRADED FUNCTION: gradient_check_n
    
    def gradient_check_n(parameters, gradients, X, Y, epsilon = 1e-7):
        """
        Checks if backward_propagation_n computes correctly the gradient of the cost output by forward_propagation_n
        
        Arguments:
        parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
        grad -- output of backward_propagation_n, contains gradients of the cost with respect to the parameters. 
        x -- input datapoint, of shape (input size, 1)
        y -- true "label"
        epsilon -- tiny shift to the input to compute approximated gradient with formula(1)
        
        Returns:
        difference -- difference (2) between the approximated gradient and the backward propagation gradient
        """
        
        # Set-up variables
    #     print(parameters)
        parameters_values, _ = dictionary_to_vector(parameters)    # 将字典转换成向量
    #     print(parameters_values, i)                              # (W1, b1, W2, b2, .....) (注:此处W1,b1都转换成了向量)
        grad = gradients_to_vector(gradients)           # 梯度转换成向量
        num_parameters = parameters_values.shape[0]     # 所有参数个数
        J_plus = np.zeros((num_parameters, 1))          # 初始化为 (num, 1)的向量
        J_minus = np.zeros((num_parameters, 1))
        gradapprox = np.zeros((num_parameters, 1))
        
        # Compute gradapprox
        for i in range(num_parameters):                 # 遍历所有参数,每个参数都求一遍 gradapprox,很费时间
            
            # Compute J_plus[i]. Inputs: "parameters_values, epsilon". Output = "J_plus[i]".
            # "_" is used because the function you have to outputs two parameters but we only care about the first one
            ### START CODE HERE ### (approx. 3 lines)
            thetaplus = np.copy(parameters_values)
            thetaplus[i, 0] += epsilon       
            # Step 2
            J_plus[i], _ = forward_propagation_n(X, Y, vector_to_dictionary(thetaplus))      # Step 3
            ### END CODE HERE ###
            
            # Compute J_minus[i]. Inputs: "parameters_values, epsilon". Output = "J_minus[i]".
            ### START CODE HERE ### (approx. 3 lines)
            thetaminus = np.copy(parameters_values)                   # Step 1
            thetaminus[i, 0] -= epsilon                               # Step 2        
            J_minus[i], _ = forward_propagation_n(X, Y, vector_to_dictionary(thetaminus))   # Step 3
            ### END CODE HERE ###
            
            # Compute gradapprox[i]
            ### START CODE HERE ### (approx. 1 line)
            gradapprox[i] = (J_plus[i] - J_minus[i]) / (2. * epsilon)
            ### END CODE HERE ###
        
        # Compare gradapprox to backward propagation gradients by computing difference.
        ### START CODE HERE ### (approx. 1 line)
        numerator = np.linalg.norm(grad - gradapprox)                               # Step 1'
        denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox)             # Step 2'
        difference = numerator / denominator  
        
        if difference > 1.2e-7:
            print ("33[93m" + "There is a mistake in the backward propagation! difference = " + str(difference) + "33[0m")
        else:
            print ("33[92m" + "Your backward propagation works perfectly fine! difference = " + str(difference) + "33[0m")
        
        return difference
    
    X, Y, parameters = gradient_check_n_test_case()
    
    cost, cache = forward_propagation_n(X, Y, parameters)
    gradients = backward_propagation_n(X, Y, cache)
    difference = gradient_check_n(parameters, gradients, X, Y)
    
    There is a mistake in the backward propagation! difference = 0.2850931566540251

    可以看出,在 backward_propagation_n代码中有一些错误。
    现在,我们修复这个错误,再来运行一下上面代码:

        dA2 = np.dot(W3.T, dZ3)
        dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    #     dW2 = 1./m * np.dot(dZ2, A1.T) * 2                  # 这里故意写错
        dW2 = 1./m * np.dot(dZ2, A1.T)                       # 修复
        db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)
        
        dA1 = np.dot(W2.T, dZ2)
        dZ1 = np.multiply(dA1, np.int64(A1 > 0))
        dW1 = 1./m * np.dot(dZ1, X.T)
    #     db1 = 4./m * np.sum(dZ1, axis=1, keepdims = True)   # 这里故意写错
        db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)   # 修复
    

    重新运行 backward_propagation_n()

    输出:
    Your backward propagation works perfectly fine! difference = 1.1885552035482147e-07

    Note

    • Gradient Checking is slow! Approximating the gradient with (frac{partial J}{partial heta} approx frac{J( heta + varepsilon) - J( heta - varepsilon)}{2 varepsilon}) 计算非常耗时. 因此, 我们在训练集上不是每一次迭代都运行梯度检测. 仅几次验证梯度是否正确,然后关掉它。
    • Gradient Checking, 不能和dropout一起工作. 你可以关掉 dropout 再运行 the gradient check algorithm 来确保你的 backprop 是正确的, 然后再打开dropout.
  • 相关阅读:
    堆排序
    conda 安装pytorch
    Dev GridControl GridView常用属性
    java 同步调用和异步调用
    spring Boot 整合 Memcached (含 windows 安装)
    spring Boot 整合 Elasticsearch
    windows 下安装 elasticsearch
    代理模式---Cglib动态代理
    代理模式---JDK动态代理
    代理模式---静态代理
  • 原文地址:https://www.cnblogs.com/douzujun/p/13084271.html
Copyright © 2011-2022 走看看