zoukankan      html  css  js  c++  java
  • Convolutional Neural Network-week1编程题(TensorFlow实现手势数字识别)

    1. TensorFlow model

    import math
    import numpy as np
    import h5py
    import matplotlib.pyplot as plt
    import scipy
    from PIL import Image
    from scipy import ndimage
    import tensorflow as tf
    from tensorflow.python.framework import ops
    from cnn_utils import *
    
    %matplotlib inline
    np.random.seed(1)
    

    导入数据

    # Loading the data (signs)
    X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()
    

    the SIGNS dataset is a collection of 6 signs representing numbers from 0 to 5.

    展示数据

    # Example of a picture
    index = 6
    plt.imshow(X_train_orig[index])
    print ("y = " + str(np.squeeze(Y_train_orig[:, index])))
    

    y = 2

    数据的维度

    X_train = X_train_orig/255.
    X_test = X_test_orig/255.
    Y_train = convert_to_one_hot(Y_train_orig, 6).T
    Y_test = convert_to_one_hot(Y_test_orig, 6).T
    print ("number of training examples = " + str(X_train.shape[0]))
    print ("number of test examples = " + str(X_test.shape[0]))
    print ("X_train shape: " + str(X_train.shape))
    print ("Y_train shape: " + str(Y_train.shape))
    print ("X_test shape: " + str(X_test.shape))
    print ("Y_test shape: " + str(Y_test.shape))
    conv_layers = {}
    

    number of training examples = 1080
    number of test examples = 120
    X_train shape: (1080, 64, 64, 3)
    Y_train shape: (1080, 6)
    X_test shape: (120, 64, 64, 3)
    Y_test shape: (120, 6)

    1.1 Create placeholders

    TensorFlow requires that you create placeholders for the input data that will be fed into the model when running the session.

    Exercise: Implement the function below to create placeholders for the input image X and the output Y.

    • You should not define the number of training examples for the moment.

    • To do so, you could use "None" as the batch size, it will give you the flexibility to choose it later.

    • Hence X should be of dimension [None, n_H0, n_W0, n_C0] and Y should be of dimension [None, n_y]. Hint.

    # GRADED FUNCTION: create_placeholders
    
    def create_placeholders(n_H0, n_W0, n_C0, n_y):
        """
        Creates the placeholders for the tensorflow session.
        
        Arguments:
        n_H0 -- scalar, height of an input image
        n_W0 -- scalar, width of an input image
        n_C0 -- scalar, number of channels of the input
        n_y -- scalar, number of classes
            
        Returns:
        X -- placeholder for the data input, of shape [None, n_H0, n_W0, n_C0] and dtype "float"
        Y -- placeholder for the input labels, of shape [None, n_y] and dtype "float"
        """
    
        ### START CODE HERE ### (≈2 lines)
        X = tf.placeholder(tf.float32, shape=[None, n_H0, n_W0, n_C0])
        Y = tf.placeholder(tf.float32, shape=[None, n_y])  
        ### END CODE HERE ###
        
        return X, Y
    

    测试:

    X, Y = create_placeholders(64, 64, 3, 6)
    print ("X = " + str(X))
    print ("Y = " + str(Y))
    

    输出:
    X = Tensor("Placeholder:0", shape=(?, 64, 64, 3), dtype=float32)
    Y = Tensor("Placeholder_1:0", shape=(?, 6), dtype=float32)

    1.2 Initialize parameters

    • You will initialize weights/filters (W1) and (W2) using tf.contrib.layers.xavier_initializer(seed = 0).

    • You don't need to worry about bias variables as you will soon see that TensorFlow functions take care of the bias.

    • Note also that you will only initialize the weights/filters for the conv2d functions. TensorFlow initializes the layers for the fully connected part automatically. We will talk more about that later in this assignment.

    Exercise: Implement initialize_parameters(). The dimensions for each group of filters are provided below. Reminder - to initialize a parameter (W) of shape [1,2,3,4] in Tensorflow, use:

    W = tf.get_variable("W", [1,2,3,4], initializer = ...)
    

    More Info.

    # GRADED FUNCTION: initialize_parameters
    
    def initialize_parameters():
        """
        Initializes weight parameters to build a neural network with tensorflow. The shapes are:
                            W1 : [4, 4, 3, 8]
                            W2 : [2, 2, 8, 16]
        Returns:
        parameters -- a dictionary of tensors containing W1, W2
        """
        
        tf.set_random_seed(1)                              # so that your "random" numbers match ours
            
        ### START CODE HERE ### (approx. 2 lines of code)
        # (f, f, n_C_prev, n_C)
        W1 = tf.get_variable('W1',[4, 4, 3, 8], initializer = tf.contrib.layers.xavier_initializer(seed = 0))
        W2 = tf.get_variable('W2',[2, 2, 8, 16], initializer = tf.contrib.layers.xavier_initializer(seed = 0))
        
        ### END CODE HERE ###
    
        parameters = {"W1": W1,
                      "W2": W2}
        
        return parameters
    

    测试

    tf.reset_default_graph()
    with tf.Session() as sess_test:
        parameters = initialize_parameters()
        init = tf.global_variables_initializer()
        sess_test.run(init)
        print("W1 = " + str(parameters["W1"].eval()[1,1,1]))
        print("W2 = " + str(parameters["W2"].eval()[1,1,1]))
    

    1.2 Forward propagation

    In TensorFlow, there are built-in functions that carry out the convolution steps for you.

    • tf.nn.conv2d(X,W1, strides = [1,s,s,1], padding = 'SAME'): given an input (X) and a group of filters (W1), this function convolves (W1)'s filters on X. The third input ([1,f,f,1]) represents the strides for each dimension of the input (m, n_H_prev, n_W_prev, n_C_prev). You can read the full documentation here

    • tf.nn.max_pool(A, ksize = [1,f,f,1], strides = [1,s,s,1], padding = 'SAME'): given an input A, this function uses a window of size (f, f) and strides of size (s, s) to carry out max pooling over each window. You can read the full documentation here

    • tf.nn.relu(Z1): computes the elementwise ReLU of Z1 (which can be any shape). You can read the full documentation here.

    • tf.contrib.layers.flatten(P): given an input P, this function flattens each example into a 1D vector it while maintaining the batch-size. It returns a flattened tensor with shape [batch_size, k]. You can read the full documentation here.

    • tf.contrib.layers.fully_connected(F, num_outputs): given a the flattened input F, it returns the output computed using a fully connected layer. You can read the full documentation here.

    In the last function above (tf.contrib.layers.fully_connected), the fully connected layer automatically initializes weights in the graph and keeps on training them as you train the model. Hence, you did not need to initialize those weights when initializing the parameters.

    Exercise:

    Implement the forward_propagation function below to build the following model: CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED. You should use the functions above.

    In detail, we will use the following parameters for all the steps:
    - Conv2D: stride 1, padding is "SAME"
    - ReLU
    - Max pool: Use an 8 by 8 filter size and an 8 by 8 stride, padding is "SAME"
    - Conv2D: stride 1, padding is "SAME"
    - ReLU
    - Max pool: Use a 4 by 4 filter size and a 4 by 4 stride, padding is "SAME"
    - Flatten the previous output.
    - FULLYCONNECTED (FC) layer: Apply a fully connected layer without an non-linear activation function. Do not call the softmax here. This will result in 6 neurons in the output layer, which then get passed later to a softmax. In TensorFlow, the softmax and cost function are lumped together into a single function, which you'll call in a different function when computing the cost.

    # GRADED FUNCTION: forward_propagation
    
    def forward_propagation(X, parameters):
        """
        Implements the forward propagation for the model:
        CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED
        
        Arguments:
        X -- input dataset placeholder, of shape (input size, number of examples)
        parameters -- python dictionary containing your parameters "W1", "W2"
                      the shapes are given in initialize_parameters
    
        Returns:
        Z3 -- the output of the last LINEAR unit
        """
        
        # Retrieve the parameters from the dictionary "parameters"     
        W1 = parameters['W1']
        W2 = parameters['W2']
        
        ### START CODE HERE ###
        # CONV2D: stride of 1, padding 'SAME'
        Z1 = tf.nn.conv2d(X, W1, strides = [1, 1, 1, 1], padding = 'SAME')
        # RELU
        A1 = tf.nn.relu(Z1)
        # MAXPOOL: window 8x8, sride 8, padding 'SAME'
        P1 = tf.nn.max_pool(A1, ksize = [1,8,8,1], strides = [1,8,8,1], padding = 'SAME')
        # CONV2D: filters W2, stride 1, padding 'SAME'
        Z2 = tf.nn.conv2d(P1,W2, strides = [1,1,1,1], padding = 'SAME')
        # RELU
        A2 = tf.nn.relu(Z2)
        # MAXPOOL: window 4x4, stride 4, padding 'SAME'
        P2 = tf.nn.max_pool(A2, ksize = [1,4,4,1], strides = [1,4,4,1], padding = 'SAME')
        # FLATTEN
        P2 = tf.contrib.layers.flatten(P2)
        # FULLY-CONNECTED without non-linear activation function (not not call softmax).
        # 6 neurons in output layer. Hint: one of the arguments should be "activation_fn=None" 
        Z3 = tf.contrib.layers.fully_connected(P2, 6, activation_fn=None)
        ### END CODE HERE ###
    
        return Z3
    

    测试:

    tf.reset_default_graph()
    
    with tf.Session() as sess:
        np.random.seed(1)
        X, Y = create_placeholders(64, 64, 3, 6)
        parameters = initialize_parameters()
        Z3 = forward_propagation(X, parameters)
        init = tf.global_variables_initializer()
        sess.run(init)
        a = sess.run(Z3, {X: np.random.randn(2,64,64,3), Y: np.random.randn(2,6)})
        print("Z3 = " + str(a))
    

    1.3 Compute cost

    Implement the compute cost function below. You might find these two functions helpful:

    • tf.nn.softmax_cross_entropy_with_logits(logits = Z3, labels = Y):

      • computes the softmax entropy loss. This function both computes the softmax activation function as well as the resulting loss.

      • You can check the full documentation here.

    • tf.reduce_mean: computes the mean of elements across dimensions of a tensor.

      • Use this to sum the losses over all the examples to get the overall cost. You can check the full documentation here.

    ** Exercise**: Compute the cost below using the function above.

    # GRADED FUNCTION: compute_cost 
    
    def compute_cost(Z3, Y):
        """
        Computes the cost
        
        Arguments:
        Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples)
        Y -- "true" labels vector placeholder, same shape as Z3
        
        Returns:
        cost - Tensor of the cost function
        """
        
        ### START CODE HERE ### (1 line of code)
        cost = tf.nn.softmax_cross_entropy_with_logits(logits = Z3, labels = Y)
        cost = tf.reduce_mean(cost)
        ### END CODE HERE ###
        
        return cost
    

    测试:

    tf.reset_default_graph()
    
    with tf.Session() as sess:
        np.random.seed(1)
        X, Y = create_placeholders(64, 64, 3, 6)
        parameters = initialize_parameters()
        Z3 = forward_propagation(X, parameters)
        cost = compute_cost(Z3, Y)
        init = tf.global_variables_initializer()
        sess.run(init)
        a = sess.run(cost, {X: np.random.randn(4,64,64,3), Y: np.random.randn(4,6)})
        print("cost = " + str(a))
    

    cost = 2.91034

    1.4 Model

    Finally you will merge the helper functions you implemented above to build a model. You will train it on the SIGNS dataset.

    You have implemented random_mini_batches() in the Optimization programming assignment of course 2. Remember that this function returns a list of mini-batches.

    Exercise: Complete the function below.

    The model below should:

    • create placeholders
    • initialize parameters
    • forward propagate
    • compute the cost
    • create an optimizer

    Finally you will create a session and run a for loop for num_epochs, get the mini-batches, and then for each mini-batch you will optimize the function. Hint for initializing the variables

    # GRADED FUNCTION: model
    
    def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.009,
              num_epochs = 100, minibatch_size = 64, print_cost = True):
        """
        Implements a three-layer ConvNet in Tensorflow:
        CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED
        
        Arguments:
        X_train -- training set, of shape (None, 64, 64, 3)
        Y_train -- test set, of shape (None, n_y = 6)
        X_test -- training set, of shape (None, 64, 64, 3)
        Y_test -- test set, of shape (None, n_y = 6)
        learning_rate -- learning rate of the optimization
        num_epochs -- number of epochs of the optimization loop
        minibatch_size -- size of a minibatch
        print_cost -- True to print the cost every 100 epochs
        
        Returns:
        train_accuracy -- real number, accuracy on the train set (X_train)
        test_accuracy -- real number, testing accuracy on the test set (X_test)
        parameters -- parameters learnt by the model. They can then be used to predict.
        """
        
        ops.reset_default_graph()                         # to be able to rerun the model without overwriting tf variables
        tf.set_random_seed(1)                             # to keep results consistent (tensorflow seed)
        seed = 3                                          # to keep results consistent (numpy seed)
        (m, n_H0, n_W0, n_C0) = X_train.shape             
        n_y = Y_train.shape[1]                            
        costs = []                                        # To keep track of the cost
        
        # Create Placeholders of the correct shape
        ### START CODE HERE ### (1 line)
        X, Y = create_placeholders(n_H0, n_W0, n_C0, n_y)
        ### END CODE HERE ###
    
        # Initialize parameters
        ### START CODE HERE ### (1 line)
        parameters = initialize_parameters()
        ### END CODE HERE ###
        
        # Forward propagation: Build the forward propagation in the tensorflow graph
        ### START CODE HERE ### (1 line)
        Z3 = forward_propagation(X, parameters)
        ### END CODE HERE ###
        
        # Cost function: Add cost function to tensorflow graph
        ### START CODE HERE ### (1 line)
        cost = compute_cost(Z3, Y)
        ### END CODE HERE ###
        
        # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer that minimizes the cost.
        ### START CODE HERE ### (1 line)
        optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
        ### END CODE HERE ###
        
        # Initialize all the variables globally
        init = tf.global_variables_initializer()
         
        # Start the session to compute the tensorflow graph
        with tf.Session() as sess:
            
            # Run the initialization
            sess.run(init)
            
            # Do the training loop
            for epoch in range(num_epochs):
    
                minibatch_cost = 0.
                num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set
                seed = seed + 1
                minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)
    
                for minibatch in minibatches:
    
                    # Select a minibatch
                    (minibatch_X, minibatch_Y) = minibatch
                    # IMPORTANT: The line that runs the graph on a minibatch.
                    # Run the session to execute the optimizer and the cost, the feedict should contain a minibatch for (X,Y).
                    ### START CODE HERE ### (1 line)
                    _ , temp_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y})
                    _ , temp_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y})
                    ### END CODE HERE ###
                    
                    minibatch_cost += temp_cost / num_minibatches
                    
    
                # Print the cost every epoch
                if print_cost == True and epoch % 5 == 0:
                    print ("Cost after epoch %i: %f" % (epoch, minibatch_cost))
                if print_cost == True and epoch % 1 == 0:
                    costs.append(minibatch_cost)
            
            
            # plot the cost
            plt.plot(np.squeeze(costs))
            plt.ylabel('cost')
            plt.xlabel('iterations (per tens)')
            plt.title("Learning rate =" + str(learning_rate))
            plt.show()
    
            # Calculate the correct predictions
            predict_op = tf.argmax(Z3, 1)
            correct_prediction = tf.equal(predict_op, tf.argmax(Y, 1))
            
            # Calculate accuracy on the test set
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
            print(accuracy)
            train_accuracy = accuracy.eval({X: X_train, Y: Y_train})
            test_accuracy = accuracy.eval({X: X_test, Y: Y_test})
            print("Train Accuracy:", train_accuracy)
            print("Test Accuracy:", test_accuracy)
                    
            return train_accuracy, test_accuracy, parameters
    

    测试:

    _, _, parameters = model(X_train, Y_train, X_test, Y_test)
    

    Cost after epoch 0: 1.917920
    Cost after epoch 5: 1.532475
    Cost after epoch 10: 1.014804
    Cost after epoch 15: 0.885137
    Cost after epoch 20: 0.766963
    Cost after epoch 25: 0.651208
    Cost after epoch 30: 0.613356
    Cost after epoch 35: 0.605931
    Cost after epoch 40: 0.534713
    Cost after epoch 45: 0.551402
    Cost after epoch 50: 0.496976
    Cost after epoch 55: 0.454438
    Cost after epoch 60: 0.455496
    Cost after epoch 65: 0.458359
    Cost after epoch 70: 0.450040
    Cost after epoch 75: 0.410687
    Cost after epoch 80: 0.469005
    Cost after epoch 85: 0.389253
    Cost after epoch 90: 0.363808
    Cost after epoch 95: 0.376132

    Tensor("Mean_1:0", shape=(), dtype=float32)
    Train Accuracy: 0.86851853
    Test Accuracy: 0.73333335

  • 相关阅读:
    怎么将java项目打包成双击就可以运行的jar包---fatjar
    hdu 2629 Identity Card (字符串解析模拟题)
    求最远点对,输出距离
    poj 2299 求逆序数
    第九周作业 实现图片压缩
    第八周作业 struts,spring,jpa整合简单测试
    第七周作业 POI操作Excel,world文档
    第七周作业 关于xml问题
    第六周作业 略谈jsp
    第六作业 持久层框架mybatis小记
  • 原文地址:https://www.cnblogs.com/douzujun/p/13143708.html
Copyright © 2011-2022 走看看