zoukankan      html  css  js  c++  java
  • Convolutional Neural Network-week2编程题2(Residual Networks)

    1. Residual Networks(残差网络)

    残差网络 就是为了解决深网络的难以训练的问题的。

    In this assignment, you will:

    • Implement the basic building blocks of ResNets.

    • Put together these building blocks to implement and train a state-of-the-art neural network for image classification.

    This assignment will be done in Keras.

    1.1 导入库

    import numpy as np
    from keras import layers
    from keras.layers import Input, Add, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D, AveragePooling2D, MaxPooling2D, GlobalMaxPooling2D
    from keras.models import Model, load_model
    from keras.preprocessing import image
    from keras.utils import layer_utils
    from keras.utils.data_utils import get_file
    from keras.applications.imagenet_utils import preprocess_input
    import pydot
    from IPython.display import SVG
    from keras.utils.vis_utils import model_to_dot
    from keras.utils import plot_model
    from resnets_utils import *
    from keras.initializers import glorot_uniform
    import scipy.misc
    from matplotlib.pyplot import imshow
    %matplotlib inline
    
    import keras.backend as K
    K.set_image_data_format('channels_last')
    K.set_learning_phase(1)
    

    2. The problem of very deep neural networks

    • 使用深层网络最大的好处就是它能够完成很复杂的功能,它能够从边缘(浅层)到 非常复杂的特征(深层)中不同的抽象层次的特征中学习。

    • 然而,深层神经网络会出现梯度消失,非常深的网络通常会有一个梯度信号,该信号会迅速的消退,从而使得梯度下降变得非常缓慢

    • 更具体的说,在梯度下降的过程中,当你从最后一层回到第一层的时候,你在每个步骤上乘以权重矩阵,因此梯度值可以迅速的指数式地减少到0(在极少数的情况下会迅速增长,造成梯度爆炸)。

    • 在训练的过程中,你可能会看到开始几层的梯度的大小(或范数)下降到0 十分的快速,如下图:

    在前几层中随着迭代次数的增加,学习的速度会下降的非常快。

    3. Building a Residual Network

    In ResNets, a "shortcut" or a "skip connection" allows the gradient to be directly backpropagated to earlier layers:

    **Figure 2** : A ResNet block showing a **skip-connection**

    图像右边是添加了一条 shortcut 的主路,通过把 these ResNet blocks 堆叠在一起,可以形成一个非常深的网络。

    ResNet blocks有两种类型,主要取决于输入输出的维度是否相同:

    3.1 Identity block (恒等块)

    输入的激活值 (a^{[l]}) 与 输出的激活值 (a^{[l+2]}) 具有相同的维度

    **Figure 3** : **Identity block.** Skip connection "skips over" 2 layers.
    • 在上图中,我们依旧把 CONV2D 与 ReLU 包含到了每个步骤中

    • 为了提升训练的速度,我们在每一步也把数据进行了 归一化(BatchNorm)

    在实践中,我们要实现: skip connection 会跳过3个隐藏层而不是两个,就像下图:

    **Figure 4** : **Identity block.** Skip connection "skips over" 3 layers.

    Here're the individual steps.

    First component of main path:

    • The first CONV2D has (F_1) filters of shape (1,1) and a stride of (1,1). 没有padding操作,padding=0 即"Valid convolutions" and its name should be conv_name_base + '2a'. 使用0作为随机种子为其random initialization.

    • The first BatchNorm is normalizing the channels axis. Its name should be bn_name_base + '2a'.

    • Then apply the ReLU activation function. 它没有命名也没有超参数(no hyperparameters).

    Second component of main path:

    • The second CONV2D has (F_2) filters of shape ((f,f)) and a stride of (1,1). 它的填充方式(padding)是 "same" and its name should be conv_name_base + '2b'. 使用0作为随机种子为其random initialization.

    • The second BatchNorm is normalizing the channels axis. Its name should be bn_name_base + '2b'.

    • Then apply the ReLU activation function. 它没有命名也没有超参数(no hyperparameters).

    Third component of main path:

    • The third CONV2D has (F_3) filters of shape (1,1) and a stride of (1,1). 没有padding操作,padding=0 即"Valid convolutions" and its name should be conv_name_base + '2c'. 使用0作为随机种子为其random initialization.

    • The third BatchNorm is normalizing the channels axis. Its name should be bn_name_base + '2c'. 注意这里没有ReLU函数

    Final step:

    • 把 the shortcut 和 the input 加到一起.

    • Then apply the ReLU activation function. 它没有命名也没有超参数(no hyperparameters).

    Exercise: Implement the ResNet identity block.

    # GRADED FUNCTION: identity_block
    
    def identity_block(X, f, filters, stage, block):
        """
        Implementation of the identity block as defined in Figure 3
        
        Arguments:
        X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
        f -- integer, specifying the shape of the middle CONV's window for the main path
        filters -- python list of integers, defining the number of filters in the CONV layers of the main path
        stage -- integer, used to name the layers, depending on their position in the network
        block -- string/character, used to name the layers, depending on their position in the network
        
        Returns:
        X -- output of the identity block, tensor of shape (n_H, n_W, n_C)
        """
        
        # defining name basis
        conv_name_base = 'res' + str(stage) + block + '_branch'
        bn_name_base = 'bn' + str(stage) + block + '_branch'
        
        # Retrieve Filters
        F1, F2, F3 = filters
        
        # Save the input value. You'll need this later to add back to the main path. 
        X_shortcut = X
        
        # First component of main path
        X = Conv2D(filters = F1, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2a', kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X)
        X = Activation('relu')(X)
        
        ### START CODE HERE ###
        
        # Second component of main path (≈3 lines)
        X = Conv2D(filters = F2, kernel_size = (f, f), strides = (1,1), padding = 'same', name = conv_name_base + '2b', kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = bn_name_base + '2b')(X)
        X = Activation('relu')(X)
    
        # Third component of main path (≈2 lines)    
        X = Conv2D(filters = F3, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2c', kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = bn_name_base + '2c')(X)
        
        
        # Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines)    
        X = Add()([X, X_shortcut])
        X = Activation('relu')(X)
        
        ### END CODE HERE ###
        
        return X
    

    测试:

    tf.reset_default_graph()
    
    with tf.Session() as test:
        np.random.seed(1)
        A_prev = tf.placeholder("float", [3, 4, 4, 6])
        X = np.random.randn(3, 4, 4, 6)
        A = identity_block(A_prev, f = 2, filters = [2, 4, 6], stage = 1, block = 'a')
        test.run(tf.global_variables_initializer())
        out = test.run([A], feed_dict={A_prev: X, K.learning_phase(): 0})
        print("out = " + str(out[0][1][1][0]))
    

    out = [0.94822985 0. 1.1610144 2.747859 0. 1.36677 ]

    3.2 The convolutional block

    The ResNet "convolutional block" is the other type of block. ,它适用于输入输出的维度不一致的情况,它不同于上面的恒等块,与之区别在于,shortcut 中有一个CONV2D层,如下图:

    **Figure 4** : **Convolutional block**

    The CONV2D layer in the shortcut path is used to resize the input (x) to a different dimension, so that the dimensions match up in the final addition needed to add the shortcut value back to the main path. ((W_s))

    • For example, 把 the activation dimensions's height and width 减少一半, 你可以使用 a 1x1 convolution with a stride of 2.

    • The CONV2D layer on the shortcut path 不使用任何 non-linear activation function. 它主要作用是 应用一个学习后的 linear function 来 reduces the dimension of the input, 以便在后面的加法步骤中的维度相匹配。

    The convolutional block 步骤如下.

    First component of main path:

    • The first CONV2D has (F_1) filters of shape (1,1) and a stride of (s,s). 没有padding操作,padding=0 即"Valid convolutions" and its name should be conv_name_base + '2a'.

    • The first BatchNorm is normalizing the channels axis. Its name should be bn_name_base + '2a'.

    • Then apply the ReLU activation function. 它没有命名也没有超参数.

    Second component of main path:

    • The second CONV2D has (F_2) filters of (f,f) and a stride of (1,1). Its padding is "same" and it's name should be conv_name_base + '2b'.

    • The second BatchNorm is normalizing the channels axis. Its name should be bn_name_base + '2b'.

    • Then apply the ReLU activation function. 它没有命名也没有超参数.

    Third component of main path:

    • The third CONV2D has (F_3) filters of (1,1) and a stride of (1,1). 没有padding操作,padding=0 即"Valid convolutions" and it's name should be conv_name_base + '2c'.

    • The third BatchNorm is normalizing the channels axis. Its name should be bn_name_base + '2c'. Note that there is no ReLU activation function in this component.

    • 注意这里没有ReLU函数

    Shortcut path:

    • The CONV2D has (F_3) filters of shape (1,1) and a stride of (s,s). 没有padding操作,padding=0 即"Valid convolutions" and its name should be conv_name_base + '1'.

    • The BatchNorm is normalizing the channels axis. Its name should be bn_name_base + '1'.

    • 注意这里没有ReLU函数

    Final step:

    • 把 the shortcut 和 the input 加到一起.

    • 应用 ReLU activation function. 它没有命名也没有超参数.

    Exercise: Implement the convolutional block.

    Conv2D(filters, kernel_size, strides=(1, 1), padding='valid', ......):
    
    filters:卷积核的数目(即输出的维度)
    kernel_size:单个整数或由两个整数构成的list/tuple,卷积核的宽度和长度。如为单个整数,则表示在各个空间维度的相同长度。
    strides:单个整数或由两个整数构成的list/tuple,为卷积的步长。如为单个整数,则表示在各个空间维度的相同步长。任何不为1的strides均与任何不为1的dilation_rate均不兼容
    padding:补0策略,为“valid”, “same” 。“valid”代表只进行有效的卷积,即对边界数据不处理。“same”代表保留边界处的卷积结果,通常会导致输出shape与输入shape相同。
    
    # GRADED FUNCTION: convolutional_block
    
    def convolutional_block(X, f, filters, stage, block, s = 2):
        """
        Implementation of the convolutional block as defined in Figure 4
        
        Arguments:
        X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
        f -- integer, specifying the shape of the middle CONV's window for the main path
        filters -- python list of integers, defining the number of filters in the CONV layers of the main path
        stage -- integer, used to name the layers, depending on their position in the network
        block -- string/character, used to name the layers, depending on their position in the network
        s -- Integer, specifying the stride to be used
        
        Returns:
        X -- output of the convolutional block, tensor of shape (n_H, n_W, n_C)
        """
        
        # defining name basis
        conv_name_base = 'res' + str(stage) + block + '_branch'
        bn_name_base = 'bn' + str(stage) + block + '_branch'
        
        # Retrieve Filters
        F1, F2, F3 = filters
        
        # Save the input value
        X_shortcut = X
    
    
        ##### MAIN PATH #####
        # First component of main path 
        X = Conv2D(F1, (1, 1), strides = (s,s), name = conv_name_base + '2a', kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X)
        X = Activation('relu')(X)
        
        ### START CODE HERE ###
    
        # Second component of main path (≈3 lines)
        X = Conv2D(F2, (f, f), strides = (1,1),padding = 'same', name = conv_name_base + '2b', kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = bn_name_base + '2b')(X)
        X = Activation('relu')(X)
    
        # Third component of main path (≈2 lines)
        X = Conv2D(F3, (1, 1), strides = (1,1),padding = 'valid', name = conv_name_base + '2c', kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = bn_name_base + '2c')(X)
    
        ##### SHORTCUT PATH #### (≈2 lines)
        # 让 X_shortcur 维度 和 Third之后的X 的维度,相同
        # 使用 F3个 1x1 的filter,X_shortcut需要步长 stride=(s,s), X已经步长 (s,s)过了
        X_shortcut = Conv2D(F3, (1, 1), strides = (s,s), name = conv_name_base + '1', kernel_initializer = glorot_uniform(seed=0))(X_shortcut)
        X_shortcut = BatchNormalization(axis = 3, name = bn_name_base + '1')(X_shortcut)
        
        # Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines)
        X = Add()([X, X_shortcut])
        X = Activation('relu')(X)
        
        ### END CODE HERE ###
        
        return X
    

    测试:

    tf.reset_default_graph()
    
    with tf.Session() as test:
        np.random.seed(1)
        A_prev = tf.placeholder("float", [3, 4, 4, 6])
        X = np.random.randn(3, 4, 4, 6)
        A = convolutional_block(A_prev, f = 2, filters = [2, 4, 6], stage = 1, block = 'a')
        test.run(tf.global_variables_initializer())
        out = test.run([A], feed_dict={A_prev: X, K.learning_phase(): 0})
        print("out = " + str(out[0][1][1][0]))
    

    out = [0.09018463 1.2348977 0.46822017 0.0367176 0. 0.65516603]

    4. Building your first ResNet model (50 layers)

    下图就描述了神经网络的算法细节,图中的"ID BLOCK"是指标准的恒等块,"ID BLOCK X3"是指把三个恒等块放在一起。

    **Figure 5** : **ResNet-50 model**

    The details of this ResNet-50 model are:

    • Zero-padding pads the input with a pad of (3,3)

    • Stage 1:

      • The 2D Convolution has 64 filters of shape (7,7) and uses a stride of (2,2). Its name is "conv1".

      • BatchNorm is applied to the channels axis of the input.

      • MaxPooling uses a (3,3) window and a (2,2) stride.

    • Stage 2:

      • The convolutional block 使用3组个数为[64,64,256]的过滤器, "f" is 3, "s" is 1 and the block is "a".

      • 2个 identity blocks 使用3组个数为[64,64,256]的过滤器, "f" is 3 and the blocks are "b" and "c".

    • Stage 3:

      • The convolutional block 使用3组个数为[128,128,512]的过滤器, "f" is 3, "s" is 2 and the block is "a".

      • 3个 identity blocks 使用3组个数为[128,128,512]的过滤器, "f" is 3 and the blocks are "b", "c" and "d".

    • Stage 4:

      • The convolutional block uses three set of filters of size [256, 256, 1024], "f" is 3, "s" is 2 and the block is "a".

      • 5个 identity blocks use three set of filters of size [256, 256, 1024], "f" is 3 and the blocks are "b", "c", "d", "e" and "f".

    • Stage 5:

      • The convolutional block uses three set of filters of size [512, 512, 2048], "f" is 3, "s" is 2 and the block is "a".

      • 2个 identity blocks use three set of filters of size [512, 512, 2048], "f" is 3 and the blocks are "b" and "c".

    • The 2D Average Pooling uses a window of shape (2,2) and its name is "avg_pool".

    • The flatten 没有任何 hyperparameters 或 命名.

    • The Fully Connected (Dense) layer 将input减少到分类的数量 using a softmax activation. Its name should be 'fc' + str(classes).

    Exercise: Implement the ResNet with 50 layers described in the figure above.

    参考文档:

    # GRADED FUNCTION: ResNet50
    
    def ResNet50(input_shape = (64, 64, 3), classes = 6):
        """
        Implementation of the popular ResNet50 the following architecture:
        CONV2D -> BATCHNORM -> RELU -> MAXPOOL -> CONVBLOCK -> IDBLOCK*2 -> CONVBLOCK -> IDBLOCK*3
        -> CONVBLOCK -> IDBLOCK*5 -> CONVBLOCK -> IDBLOCK*2 -> AVGPOOL -> TOPLAYER
    
        Arguments:
        input_shape -- shape of the images of the dataset
        classes -- integer, number of classes
    
        Returns:
        model -- a Model() instance in Keras
        """
        
        # Define the input as a tensor with shape input_shape
        X_input = Input(input_shape)
    
        
        # Zero-Padding
        X = ZeroPadding2D((3, 3))(X_input)
        
        # Stage 1
        X = Conv2D(64, (7, 7), strides = (2, 2), name = 'conv1', kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = 'bn_conv1')(X)
        X = Activation('relu')(X)
        X = MaxPooling2D((3, 3), strides=(2, 2))(X)
    
        # Stage 2
        X = convolutional_block(X, f = 3, filters = [64, 64, 256], stage = 2, block='a', s = 1)
        # f = 3, filter个数分别为 64, 64, 256
        X = identity_block(X, 3, [64, 64, 256], stage=2, block='b')
        X = identity_block(X, 3, [64, 64, 256], stage=2, block='c')
    
        ### START CODE HERE ###
    
        # Stage 3 (≈4 lines)
        X = convolutional_block(X, f = 3, filters = [128, 128, 512], stage = 3, block = 'a', s = 2)
        X = identity_block(X, 3, filters = [128, 128, 512], stage = 3, block = 'b')
        X = identity_block(X, 3, filters = [128, 128, 512], stage = 3, block = 'c')
        X = identity_block(X, 3, filters = [128, 128, 512], stage = 3, block = 'd')
        
    
        # Stage 4 (≈6 lines)
        X = convolutional_block(X, f = 3, filters = [256, 256, 1024], stage = 4, block = 'a', s = 2)
        X = identity_block(X, 3, filters = [256, 256, 1024], stage = 4, block = 'b')
        X = identity_block(X, 3, filters = [256, 256, 1024], stage = 4, block = 'c')
        X = identity_block(X, 3, filters = [256, 256, 1024], stage = 4, block = 'd')
        X = identity_block(X, 3, filters = [256, 256, 1024], stage = 4, block = 'e')
        X = identity_block(X, 3, filters = [256, 256, 1024], stage = 4, block = 'f')
    
    
        # Stage 5 (≈3 lines)
        X = convolutional_block(X, f = 3, filters = [512, 512, 2048], stage = 5, block='a', s = 2)
        X = identity_block(X, 3, [512, 512, 2048], stage=5, block='b')
        X = identity_block(X, 3, [512, 512, 2048], stage=5, block='c')
    
        # AVGPOOL (≈1 line). Use "X = AveragePooling2D(...)(X)"
        X = AveragePooling2D(pool_size=(2, 2), strides=None, padding='valid', data_format=None, name="avg_pool")(X)
        
        ### END CODE HERE ###
    
        # output layer
        X = Flatten()(X)
        X = Dense(classes, activation='softmax', name='fc' + str(classes), kernel_initializer = glorot_uniform(seed=0))(X)
        
        # Create model
    #     from keras.layers import Lambda
    #     my_concat = Lambda(lambda x: K.concatenate([x[0],x[1]],axis=-1))
        
        model = Model(inputs = X_input, outputs = X, name='ResNet50')
    
        return model
    
    # 创建模型
    model = ResNet50(input_shape = (64, 64, 3), classes = 6)
    # 编译模型
    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
    

    导入数据

    X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()
    
    # Normalize image vectors
    X_train = X_train_orig/255.
    X_test = X_test_orig/255.
    
    # Convert training and test labels to one hot matrices
    Y_train = convert_to_one_hot(Y_train_orig, 6).T
    Y_test = convert_to_one_hot(Y_test_orig, 6).T
    
    print ("number of training examples = " + str(X_train.shape[0]))
    print ("number of test examples = " + str(X_test.shape[0]))
    print ("X_train shape: " + str(X_train.shape))
    print ("Y_train shape: " + str(Y_train.shape))
    print ("X_test shape: " + str(X_test.shape))
    print ("Y_test shape: " + str(Y_test.shape))
    

    number of training examples = 1080
    number of test examples = 120
    X_train shape: (1080, 64, 64, 3)
    Y_train shape: (1080, 6)
    X_test shape: (120, 64, 64, 3)
    Y_test shape: (120, 6)

    # 训练模型
    model.fit(X_train, Y_train, epochs = 2, batch_size = 32)
    
    Epoch 1/2
    1080/1080 [==============================] - 360s - loss: 2.8792 - acc: 0.2574   
    Epoch 2/2
    1080/1080 [==============================] - 357s - loss: 2.1027 - acc: 0.3426  
    
    # 评估模型
    preds = model.evaluate(X_test, Y_test)
    print ("Loss = " + str(preds[0]))
    print ("Test Accuracy = " + str(preds[1]))
    
    120/120 [==============================] - 11s    
    Loss = 2.249542538324992
    Test Accuracy = 0.16666666666666666
    

    在完成这个任务之后,如果愿意的话,您还可以选择继续训练ResNet。当

    我们训练20 epochs时,我们得到了更好的性能,但是在得在CPU上训练需要一个多小时。
    我们加载已经训练好的 ResNet50模型的权重:

    model = load_model('ResNet50.h5', compile=False)  # 因为版本问题,必须加 False
    # 重新编译
    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
    
    # 评估模型
    preds = model.evaluate(X_test, Y_test)
    print ("Loss = " + str(preds[0]))
    print ("Test Accuracy = " + str(preds[1]))
    

    120/120 [==============================] - 10s
    Loss = 0.10854306469360987
    Test Accuracy = 0.9666666626930237

    5. 测试你自己的图片

    import imageio
    
    img_path = 'images/my_image.jpg'
    
    img = image.load_img(img_path, target_size=(64, 64))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0) / 255 
    # # x = preprocess_input(x)
    print('Input image shape:', x.shape)
    
    # # 显示图像
    my_image = imageio.imread(img_path)
    imshow(my_image)
    
    print("class prediction vector [p(0), p(1), p(2), p(3), p(4), p(5)] = ")
    print(model.predict(x))
    
    print(np.argmax(model.predict(x)))
    

    Input image shape: (1, 64, 64, 3)
    class prediction vector [p(0), p(1), p(2), p(3), p(4), p(5)] =
    [[2.9170844e-08 4.4383746e-06 9.9998820e-01 3.6407993e-08 7.3888405e-06
    4.3413018e-10]]
    2

    显示模型总结

    model.summary()
    
    ____________________________________________________________________________________________________
    Layer (type)                     Output Shape          Param #     Connected to                     
    ====================================================================================================
    input_1 (InputLayer)             (None, 64, 64, 3)     0                                            
    ____________________________________________________________________________________________________
    zero_padding2d_1 (ZeroPadding2D) (None, 70, 70, 3)     0           input_1[0][0]                    
    ____________________________________________________________________________________________________
    conv1 (Conv2D)                   (None, 32, 32, 64)    9472        zero_padding2d_1[0][0]           
    ____________________________________________________________________________________________________
    bn_conv1 (BatchNormalization)    (None, 32, 32, 64)    256         conv1[0][0]                      
    ____________________________________________________________________________________________________
    activation_4 (Activation)        (None, 32, 32, 64)    0           bn_conv1[0][0]                   
    ____________________________________________________________________________________________________
    max_pooling2d_1 (MaxPooling2D)   (None, 15, 15, 64)    0           activation_4[0][0]               
    ____________________________________________________________________________________________________
    res2a_branch2a (Conv2D)          (None, 15, 15, 64)    4160        max_pooling2d_1[0][0]            
    ____________________________________________________________________________________________________
    bn2a_branch2a (BatchNormalizatio (None, 15, 15, 64)    256         res2a_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_5 (Activation)        (None, 15, 15, 64)    0           bn2a_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res2a_branch2b (Conv2D)          (None, 15, 15, 64)    36928       activation_5[0][0]               
    ____________________________________________________________________________________________________
    bn2a_branch2b (BatchNormalizatio (None, 15, 15, 64)    256         res2a_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_6 (Activation)        (None, 15, 15, 64)    0           bn2a_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res2a_branch2c (Conv2D)          (None, 15, 15, 256)   16640       activation_6[0][0]               
    ____________________________________________________________________________________________________
    res2a_branch1 (Conv2D)           (None, 15, 15, 256)   16640       max_pooling2d_1[0][0]            
    ____________________________________________________________________________________________________
    bn2a_branch2c (BatchNormalizatio (None, 15, 15, 256)   1024        res2a_branch2c[0][0]             
    ____________________________________________________________________________________________________
    bn2a_branch1 (BatchNormalization (None, 15, 15, 256)   1024        res2a_branch1[0][0]              
    ____________________________________________________________________________________________________
    add_2 (Add)                      (None, 15, 15, 256)   0           bn2a_branch2c[0][0]              
                                                                       bn2a_branch1[0][0]               
    ____________________________________________________________________________________________________
    activation_7 (Activation)        (None, 15, 15, 256)   0           add_2[0][0]                      
    ____________________________________________________________________________________________________
    res2b_branch2a (Conv2D)          (None, 15, 15, 64)    16448       activation_7[0][0]               
    ____________________________________________________________________________________________________
    bn2b_branch2a (BatchNormalizatio (None, 15, 15, 64)    256         res2b_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_8 (Activation)        (None, 15, 15, 64)    0           bn2b_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res2b_branch2b (Conv2D)          (None, 15, 15, 64)    36928       activation_8[0][0]               
    ____________________________________________________________________________________________________
    bn2b_branch2b (BatchNormalizatio (None, 15, 15, 64)    256         res2b_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_9 (Activation)        (None, 15, 15, 64)    0           bn2b_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res2b_branch2c (Conv2D)          (None, 15, 15, 256)   16640       activation_9[0][0]               
    ____________________________________________________________________________________________________
    bn2b_branch2c (BatchNormalizatio (None, 15, 15, 256)   1024        res2b_branch2c[0][0]             
    ____________________________________________________________________________________________________
    add_3 (Add)                      (None, 15, 15, 256)   0           bn2b_branch2c[0][0]              
                                                                       activation_7[0][0]               
    ____________________________________________________________________________________________________
    activation_10 (Activation)       (None, 15, 15, 256)   0           add_3[0][0]                      
    ____________________________________________________________________________________________________
    res2c_branch2a (Conv2D)          (None, 15, 15, 64)    16448       activation_10[0][0]              
    ____________________________________________________________________________________________________
    bn2c_branch2a (BatchNormalizatio (None, 15, 15, 64)    256         res2c_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_11 (Activation)       (None, 15, 15, 64)    0           bn2c_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res2c_branch2b (Conv2D)          (None, 15, 15, 64)    36928       activation_11[0][0]              
    ____________________________________________________________________________________________________
    bn2c_branch2b (BatchNormalizatio (None, 15, 15, 64)    256         res2c_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_12 (Activation)       (None, 15, 15, 64)    0           bn2c_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res2c_branch2c (Conv2D)          (None, 15, 15, 256)   16640       activation_12[0][0]              
    ____________________________________________________________________________________________________
    bn2c_branch2c (BatchNormalizatio (None, 15, 15, 256)   1024        res2c_branch2c[0][0]             
    ____________________________________________________________________________________________________
    add_4 (Add)                      (None, 15, 15, 256)   0           bn2c_branch2c[0][0]              
                                                                       activation_10[0][0]              
    ____________________________________________________________________________________________________
    activation_13 (Activation)       (None, 15, 15, 256)   0           add_4[0][0]                      
    ____________________________________________________________________________________________________
    res3a_branch2a (Conv2D)          (None, 8, 8, 128)     32896       activation_13[0][0]              
    ____________________________________________________________________________________________________
    bn3a_branch2a (BatchNormalizatio (None, 8, 8, 128)     512         res3a_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_14 (Activation)       (None, 8, 8, 128)     0           bn3a_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res3a_branch2b (Conv2D)          (None, 8, 8, 128)     147584      activation_14[0][0]              
    ____________________________________________________________________________________________________
    bn3a_branch2b (BatchNormalizatio (None, 8, 8, 128)     512         res3a_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_15 (Activation)       (None, 8, 8, 128)     0           bn3a_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res3a_branch2c (Conv2D)          (None, 8, 8, 512)     66048       activation_15[0][0]              
    ____________________________________________________________________________________________________
    res3a_branch1 (Conv2D)           (None, 8, 8, 512)     131584      activation_13[0][0]              
    ____________________________________________________________________________________________________
    bn3a_branch2c (BatchNormalizatio (None, 8, 8, 512)     2048        res3a_branch2c[0][0]             
    ____________________________________________________________________________________________________
    bn3a_branch1 (BatchNormalization (None, 8, 8, 512)     2048        res3a_branch1[0][0]              
    ____________________________________________________________________________________________________
    add_5 (Add)                      (None, 8, 8, 512)     0           bn3a_branch2c[0][0]              
                                                                       bn3a_branch1[0][0]               
    ____________________________________________________________________________________________________
    activation_16 (Activation)       (None, 8, 8, 512)     0           add_5[0][0]                      
    ____________________________________________________________________________________________________
    res3b_branch2a (Conv2D)          (None, 8, 8, 128)     65664       activation_16[0][0]              
    ____________________________________________________________________________________________________
    bn3b_branch2a (BatchNormalizatio (None, 8, 8, 128)     512         res3b_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_17 (Activation)       (None, 8, 8, 128)     0           bn3b_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res3b_branch2b (Conv2D)          (None, 8, 8, 128)     147584      activation_17[0][0]              
    ____________________________________________________________________________________________________
    bn3b_branch2b (BatchNormalizatio (None, 8, 8, 128)     512         res3b_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_18 (Activation)       (None, 8, 8, 128)     0           bn3b_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res3b_branch2c (Conv2D)          (None, 8, 8, 512)     66048       activation_18[0][0]              
    ____________________________________________________________________________________________________
    bn3b_branch2c (BatchNormalizatio (None, 8, 8, 512)     2048        res3b_branch2c[0][0]             
    ____________________________________________________________________________________________________
    add_6 (Add)                      (None, 8, 8, 512)     0           bn3b_branch2c[0][0]              
                                                                       activation_16[0][0]              
    ____________________________________________________________________________________________________
    activation_19 (Activation)       (None, 8, 8, 512)     0           add_6[0][0]                      
    ____________________________________________________________________________________________________
    res3c_branch2a (Conv2D)          (None, 8, 8, 128)     65664       activation_19[0][0]              
    ____________________________________________________________________________________________________
    bn3c_branch2a (BatchNormalizatio (None, 8, 8, 128)     512         res3c_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_20 (Activation)       (None, 8, 8, 128)     0           bn3c_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res3c_branch2b (Conv2D)          (None, 8, 8, 128)     147584      activation_20[0][0]              
    ____________________________________________________________________________________________________
    bn3c_branch2b (BatchNormalizatio (None, 8, 8, 128)     512         res3c_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_21 (Activation)       (None, 8, 8, 128)     0           bn3c_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res3c_branch2c (Conv2D)          (None, 8, 8, 512)     66048       activation_21[0][0]              
    ____________________________________________________________________________________________________
    bn3c_branch2c (BatchNormalizatio (None, 8, 8, 512)     2048        res3c_branch2c[0][0]             
    ____________________________________________________________________________________________________
    add_7 (Add)                      (None, 8, 8, 512)     0           bn3c_branch2c[0][0]              
                                                                       activation_19[0][0]              
    ____________________________________________________________________________________________________
    activation_22 (Activation)       (None, 8, 8, 512)     0           add_7[0][0]                      
    ____________________________________________________________________________________________________
    res3d_branch2a (Conv2D)          (None, 8, 8, 128)     65664       activation_22[0][0]              
    ____________________________________________________________________________________________________
    bn3d_branch2a (BatchNormalizatio (None, 8, 8, 128)     512         res3d_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_23 (Activation)       (None, 8, 8, 128)     0           bn3d_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res3d_branch2b (Conv2D)          (None, 8, 8, 128)     147584      activation_23[0][0]              
    ____________________________________________________________________________________________________
    bn3d_branch2b (BatchNormalizatio (None, 8, 8, 128)     512         res3d_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_24 (Activation)       (None, 8, 8, 128)     0           bn3d_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res3d_branch2c (Conv2D)          (None, 8, 8, 512)     66048       activation_24[0][0]              
    ____________________________________________________________________________________________________
    bn3d_branch2c (BatchNormalizatio (None, 8, 8, 512)     2048        res3d_branch2c[0][0]             
    ____________________________________________________________________________________________________
    add_8 (Add)                      (None, 8, 8, 512)     0           bn3d_branch2c[0][0]              
                                                                       activation_22[0][0]              
    ____________________________________________________________________________________________________
    activation_25 (Activation)       (None, 8, 8, 512)     0           add_8[0][0]                      
    ____________________________________________________________________________________________________
    res4a_branch2a (Conv2D)          (None, 4, 4, 256)     131328      activation_25[0][0]              
    ____________________________________________________________________________________________________
    bn4a_branch2a (BatchNormalizatio (None, 4, 4, 256)     1024        res4a_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_26 (Activation)       (None, 4, 4, 256)     0           bn4a_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res4a_branch2b (Conv2D)          (None, 4, 4, 256)     590080      activation_26[0][0]              
    ____________________________________________________________________________________________________
    bn4a_branch2b (BatchNormalizatio (None, 4, 4, 256)     1024        res4a_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_27 (Activation)       (None, 4, 4, 256)     0           bn4a_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res4a_branch2c (Conv2D)          (None, 4, 4, 1024)    263168      activation_27[0][0]              
    ____________________________________________________________________________________________________
    res4a_branch1 (Conv2D)           (None, 4, 4, 1024)    525312      activation_25[0][0]              
    ____________________________________________________________________________________________________
    bn4a_branch2c (BatchNormalizatio (None, 4, 4, 1024)    4096        res4a_branch2c[0][0]             
    ____________________________________________________________________________________________________
    bn4a_branch1 (BatchNormalization (None, 4, 4, 1024)    4096        res4a_branch1[0][0]              
    ____________________________________________________________________________________________________
    add_9 (Add)                      (None, 4, 4, 1024)    0           bn4a_branch2c[0][0]              
                                                                       bn4a_branch1[0][0]               
    ____________________________________________________________________________________________________
    activation_28 (Activation)       (None, 4, 4, 1024)    0           add_9[0][0]                      
    ____________________________________________________________________________________________________
    res4b_branch2a (Conv2D)          (None, 4, 4, 256)     262400      activation_28[0][0]              
    ____________________________________________________________________________________________________
    bn4b_branch2a (BatchNormalizatio (None, 4, 4, 256)     1024        res4b_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_29 (Activation)       (None, 4, 4, 256)     0           bn4b_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res4b_branch2b (Conv2D)          (None, 4, 4, 256)     590080      activation_29[0][0]              
    ____________________________________________________________________________________________________
    bn4b_branch2b (BatchNormalizatio (None, 4, 4, 256)     1024        res4b_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_30 (Activation)       (None, 4, 4, 256)     0           bn4b_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res4b_branch2c (Conv2D)          (None, 4, 4, 1024)    263168      activation_30[0][0]              
    ____________________________________________________________________________________________________
    bn4b_branch2c (BatchNormalizatio (None, 4, 4, 1024)    4096        res4b_branch2c[0][0]             
    ____________________________________________________________________________________________________
    add_10 (Add)                     (None, 4, 4, 1024)    0           bn4b_branch2c[0][0]              
                                                                       activation_28[0][0]              
    ____________________________________________________________________________________________________
    activation_31 (Activation)       (None, 4, 4, 1024)    0           add_10[0][0]                     
    ____________________________________________________________________________________________________
    res4c_branch2a (Conv2D)          (None, 4, 4, 256)     262400      activation_31[0][0]              
    ____________________________________________________________________________________________________
    bn4c_branch2a (BatchNormalizatio (None, 4, 4, 256)     1024        res4c_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_32 (Activation)       (None, 4, 4, 256)     0           bn4c_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res4c_branch2b (Conv2D)          (None, 4, 4, 256)     590080      activation_32[0][0]              
    ____________________________________________________________________________________________________
    bn4c_branch2b (BatchNormalizatio (None, 4, 4, 256)     1024        res4c_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_33 (Activation)       (None, 4, 4, 256)     0           bn4c_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res4c_branch2c (Conv2D)          (None, 4, 4, 1024)    263168      activation_33[0][0]              
    ____________________________________________________________________________________________________
    bn4c_branch2c (BatchNormalizatio (None, 4, 4, 1024)    4096        res4c_branch2c[0][0]             
    ____________________________________________________________________________________________________
    add_11 (Add)                     (None, 4, 4, 1024)    0           bn4c_branch2c[0][0]              
                                                                       activation_31[0][0]              
    ____________________________________________________________________________________________________
    activation_34 (Activation)       (None, 4, 4, 1024)    0           add_11[0][0]                     
    ____________________________________________________________________________________________________
    res4d_branch2a (Conv2D)          (None, 4, 4, 256)     262400      activation_34[0][0]              
    ____________________________________________________________________________________________________
    bn4d_branch2a (BatchNormalizatio (None, 4, 4, 256)     1024        res4d_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_35 (Activation)       (None, 4, 4, 256)     0           bn4d_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res4d_branch2b (Conv2D)          (None, 4, 4, 256)     590080      activation_35[0][0]              
    ____________________________________________________________________________________________________
    bn4d_branch2b (BatchNormalizatio (None, 4, 4, 256)     1024        res4d_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_36 (Activation)       (None, 4, 4, 256)     0           bn4d_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res4d_branch2c (Conv2D)          (None, 4, 4, 1024)    263168      activation_36[0][0]              
    ____________________________________________________________________________________________________
    bn4d_branch2c (BatchNormalizatio (None, 4, 4, 1024)    4096        res4d_branch2c[0][0]             
    ____________________________________________________________________________________________________
    add_12 (Add)                     (None, 4, 4, 1024)    0           bn4d_branch2c[0][0]              
                                                                       activation_34[0][0]              
    ____________________________________________________________________________________________________
    activation_37 (Activation)       (None, 4, 4, 1024)    0           add_12[0][0]                     
    ____________________________________________________________________________________________________
    res4e_branch2a (Conv2D)          (None, 4, 4, 256)     262400      activation_37[0][0]              
    ____________________________________________________________________________________________________
    bn4e_branch2a (BatchNormalizatio (None, 4, 4, 256)     1024        res4e_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_38 (Activation)       (None, 4, 4, 256)     0           bn4e_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res4e_branch2b (Conv2D)          (None, 4, 4, 256)     590080      activation_38[0][0]              
    ____________________________________________________________________________________________________
    bn4e_branch2b (BatchNormalizatio (None, 4, 4, 256)     1024        res4e_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_39 (Activation)       (None, 4, 4, 256)     0           bn4e_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res4e_branch2c (Conv2D)          (None, 4, 4, 1024)    263168      activation_39[0][0]              
    ____________________________________________________________________________________________________
    bn4e_branch2c (BatchNormalizatio (None, 4, 4, 1024)    4096        res4e_branch2c[0][0]             
    ____________________________________________________________________________________________________
    add_13 (Add)                     (None, 4, 4, 1024)    0           bn4e_branch2c[0][0]              
                                                                       activation_37[0][0]              
    ____________________________________________________________________________________________________
    activation_40 (Activation)       (None, 4, 4, 1024)    0           add_13[0][0]                     
    ____________________________________________________________________________________________________
    res4f_branch2a (Conv2D)          (None, 4, 4, 256)     262400      activation_40[0][0]              
    ____________________________________________________________________________________________________
    bn4f_branch2a (BatchNormalizatio (None, 4, 4, 256)     1024        res4f_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_41 (Activation)       (None, 4, 4, 256)     0           bn4f_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res4f_branch2b (Conv2D)          (None, 4, 4, 256)     590080      activation_41[0][0]              
    ____________________________________________________________________________________________________
    bn4f_branch2b (BatchNormalizatio (None, 4, 4, 256)     1024        res4f_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_42 (Activation)       (None, 4, 4, 256)     0           bn4f_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res4f_branch2c (Conv2D)          (None, 4, 4, 1024)    263168      activation_42[0][0]              
    ____________________________________________________________________________________________________
    bn4f_branch2c (BatchNormalizatio (None, 4, 4, 1024)    4096        res4f_branch2c[0][0]             
    ____________________________________________________________________________________________________
    add_14 (Add)                     (None, 4, 4, 1024)    0           bn4f_branch2c[0][0]              
                                                                       activation_40[0][0]              
    ____________________________________________________________________________________________________
    activation_43 (Activation)       (None, 4, 4, 1024)    0           add_14[0][0]                     
    ____________________________________________________________________________________________________
    res5a_branch2a (Conv2D)          (None, 2, 2, 512)     524800      activation_43[0][0]              
    ____________________________________________________________________________________________________
    bn5a_branch2a (BatchNormalizatio (None, 2, 2, 512)     2048        res5a_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_44 (Activation)       (None, 2, 2, 512)     0           bn5a_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res5a_branch2b (Conv2D)          (None, 2, 2, 512)     2359808     activation_44[0][0]              
    ____________________________________________________________________________________________________
    bn5a_branch2b (BatchNormalizatio (None, 2, 2, 512)     2048        res5a_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_45 (Activation)       (None, 2, 2, 512)     0           bn5a_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res5a_branch2c (Conv2D)          (None, 2, 2, 2048)    1050624     activation_45[0][0]              
    ____________________________________________________________________________________________________
    res5a_branch1 (Conv2D)           (None, 2, 2, 2048)    2099200     activation_43[0][0]              
    ____________________________________________________________________________________________________
    bn5a_branch2c (BatchNormalizatio (None, 2, 2, 2048)    8192        res5a_branch2c[0][0]             
    ____________________________________________________________________________________________________
    bn5a_branch1 (BatchNormalization (None, 2, 2, 2048)    8192        res5a_branch1[0][0]              
    ____________________________________________________________________________________________________
    add_15 (Add)                     (None, 2, 2, 2048)    0           bn5a_branch2c[0][0]              
                                                                       bn5a_branch1[0][0]               
    ____________________________________________________________________________________________________
    activation_46 (Activation)       (None, 2, 2, 2048)    0           add_15[0][0]                     
    ____________________________________________________________________________________________________
    res5b_branch2a (Conv2D)          (None, 2, 2, 512)     1049088     activation_46[0][0]              
    ____________________________________________________________________________________________________
    bn5b_branch2a (BatchNormalizatio (None, 2, 2, 512)     2048        res5b_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_47 (Activation)       (None, 2, 2, 512)     0           bn5b_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res5b_branch2b (Conv2D)          (None, 2, 2, 512)     2359808     activation_47[0][0]              
    ____________________________________________________________________________________________________
    bn5b_branch2b (BatchNormalizatio (None, 2, 2, 512)     2048        res5b_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_48 (Activation)       (None, 2, 2, 512)     0           bn5b_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res5b_branch2c (Conv2D)          (None, 2, 2, 2048)    1050624     activation_48[0][0]              
    ____________________________________________________________________________________________________
    bn5b_branch2c (BatchNormalizatio (None, 2, 2, 2048)    8192        res5b_branch2c[0][0]             
    ____________________________________________________________________________________________________
    add_16 (Add)                     (None, 2, 2, 2048)    0           bn5b_branch2c[0][0]              
                                                                       activation_46[0][0]              
    ____________________________________________________________________________________________________
    activation_49 (Activation)       (None, 2, 2, 2048)    0           add_16[0][0]                     
    ____________________________________________________________________________________________________
    res5c_branch2a (Conv2D)          (None, 2, 2, 512)     1049088     activation_49[0][0]              
    ____________________________________________________________________________________________________
    bn5c_branch2a (BatchNormalizatio (None, 2, 2, 512)     2048        res5c_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_50 (Activation)       (None, 2, 2, 512)     0           bn5c_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res5c_branch2b (Conv2D)          (None, 2, 2, 512)     2359808     activation_50[0][0]              
    ____________________________________________________________________________________________________
    bn5c_branch2b (BatchNormalizatio (None, 2, 2, 512)     2048        res5c_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_51 (Activation)       (None, 2, 2, 512)     0           bn5c_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res5c_branch2c (Conv2D)          (None, 2, 2, 2048)    1050624     activation_51[0][0]              
    ____________________________________________________________________________________________________
    bn5c_branch2c (BatchNormalizatio (None, 2, 2, 2048)    8192        res5c_branch2c[0][0]             
    ____________________________________________________________________________________________________
    add_17 (Add)                     (None, 2, 2, 2048)    0           bn5c_branch2c[0][0]              
                                                                       activation_49[0][0]              
    ____________________________________________________________________________________________________
    activation_52 (Activation)       (None, 2, 2, 2048)    0           add_17[0][0]                     
    ____________________________________________________________________________________________________
    avg_pool (AveragePooling2D)      (None, 1, 1, 2048)    0           activation_52[0][0]              
    ____________________________________________________________________________________________________
    flatten_1 (Flatten)              (None, 2048)          0           avg_pool[0][0]                   
    ____________________________________________________________________________________________________
    fc6 (Dense)                      (None, 6)             12294       flatten_1[0][0]                  
    ====================================================================================================
    Total params: 23,600,006
    Trainable params: 23,546,886
    Non-trainable params: 53,120
    
    plot_model(model, to_file='model.png')
    SVG(model_to_dot(model).create(prog='dot', format='svg'))
    

  • 相关阅读:
    ipfs cluster 模式部署使用(docker-compose 环境运行)
    lerna import && add 使用&&常见问题解决
    memsql kafka集成
    memsql 6.7集群安装
    过程、性能基线、性能模型与目标之间的关系
    oracle extract函数
    ORACLE的VARCHAR2是字节还是字符
    infor系统日常问题解决笔记
    Oracle获取当前年、月、日的方法
    Windows下Redis中RedisQFork位置调整
  • 原文地址:https://www.cnblogs.com/douzujun/p/13160666.html
Copyright © 2011-2022 走看看